Wenbo Ding (Clemson University), Hongxin Hu (University at Buffalo), Long Cheng (Clemson University)

The Internet of Things (IoT) platforms bring significant convenience for increased home automation. Especially, these platforms provide many new features for managing multiple IoT devices to control their physical surroundings. However, these features also bring new safety and security challenges. For example, an attacker can manipulate IoT devices to launch attacks through unexpected physical interactions. Unfortunately, very few existing research investigates the physical interactions among IoT devices and their impacts on IoT safety and security. In this paper, we propose a novel dynamic safety and security policy enforcement system called IoTSafe, which can capture and manage real physical interactions considering contextual features on smart home platforms. To identify real physical interactions of IoT devices, we present a runtime physical interaction discovery approach, which employs both static analysis and dynamic testing techniques to identify runtime physical interactions among IoT devices. In addition, IoTSafe generates physical and non-physical interaction paths and their context in a multi-app environment. Based on paths and context data, IoTSafe constructs physical models for temporal physical interactions, which can predict incoming risky situations and block unsafe device states accordingly. We implement a prototype of IoTSafe on the SmartThings platform. Our extensive evaluations demonstrate that IoTSafe effectively identifies 39 real physical interactions among 130 potential interactions in our experimental environment. IoTSafe also successfully predicts risky situations related to temporal physical interactions with nearly 96% accuracy and prevents highly risky conditions.

View More Papers

Demo #4: Attacking Tesla Model X’s Autopilot Using Compromised...

Ben Nassi (Ben-Gurion University of the Negev), Yisroel Mirsky (Ben-Gurion University of the Negev, Georgia Tech), Dudi Nassi, Raz Ben Netanel (Ben-Gurion University of the Negev), Oleg Drokin (Independent Researcher), and Yuval Elovici (Ben-Gurion University of the Negev) Best Demo Award Winner ($300 cash prize)!

Read More

Screen Gleaning: A Screen Reading TEMPEST Attack on Mobile...

Zhuoran Liu (Radboud university), Niels Samwel (Radboud University), Léo Weissbart (Radboud University), Zhengyu Zhao (Radboud University), Dirk Lauret (Radboud University), Lejla Batina (Radboud University), Martha Larson (Radboud University)

Read More

Impact Evaluation of Falsified Data Attacks on Connected Vehicle...

Shihong Huang (University of Michigan, Ann Arbor), Yiheng Feng (Purdue University), Wai Wong (University of Michigan, Ann Arbor), Qi Alfred Chen (UC Irvine), Z. Morley Mao and Henry X. Liu (University of Michigan, Ann Arbor) Best Paper Award Runner-up ($200 cash prize)!

Read More

Short Paper: Declarative Demand-Driven Reverse Engineering

Yihao Sun, Jeffrey Ching, Kristopher Micinski (Department of Electical Engineering and Computer Science, Syracuse University)

Read More