Daniel Reijsbergen (Singapore University of Technology and Design), Pawel Szalachowski (Singapore University of Technology and Design), Junming Ke (University of Tartu), Zengpeng Li (Singapore University of Technology and Design), Jianying Zhou (Singapore University of Technology and Design)

We present Large-scale Known-committee Stake-based Agreement (LaKSA), a chain-based Proof-of-Stake protocol that is dedicated, but not limited, to cryptocurrencies. LaKSA minimizes interactions between nodes through lightweight committee voting, resulting in a simpler, more robust, and more scalable proposal than competing systems. It also mitigates other drawbacks of previous systems, such as high reward variance and long confirmation times. LaKSA can support large numbers of nodes by design, and provides probabilistic safety guarantees in which a client makes commit decisions by calculating the probability that a transaction is reverted based on its blockchain view. We present a thorough analysis of LaKSA and report on its implementation and evaluation. Furthermore, our new technique of proving safety can be applied more broadly to other Proof-of-Stake protocols.

View More Papers

Detecting Kernel Memory Leaks in Specialized Modules with Ownership...

Navid Emamdoost (University of Minnesota), Qiushi Wu (University of Minnesota), Kangjie Lu (University of Minnesota), Stephen McCamant (University of Minnesota)

Read More

A First Look at Scams on YouTube

Elijah Bouma-Sims, Bradley Reaves (North Carolina State University)

Read More

TASE: Reducing Latency of Symbolic Execution with Transactional Memory

Adam Humphries (University of North Carolina), Kartik Cating-Subramanian (University of Colorado), Michael K. Reiter (Duke University)

Read More

A Devil of a Time: How Vulnerable is NTP...

Yarin Perry (The Hebrew University of Jerusalem), Neta Rozen-Schiff (The Hebrew University of Jerusalem), Michael Schapira (The Hebrew University of Jerusalem)

Read More