Virat Shejwalkar (UMass Amherst), Amir Houmansadr (UMass Amherst)

Federated learning (FL) enables many data owners (e.g., mobile devices) to train a joint ML model (e.g., a next-word prediction classifier) without the need of sharing their private training data.

However, FL is known to be susceptible to poisoning attacks by malicious participants (e.g., adversary-owned mobile devices) who aim at hampering the accuracy of the jointly trained model through sending malicious inputs during the federated training process.

In this paper, we present a generic framework for model poisoning attacks on FL. We show that our framework leads to poisoning attacks that substantially outperform state-of-the-art model poisoning attacks by large margins. For instance, our attacks result in $1.5times$ to $60times$ higher reductions in the accuracy of FL models compared to previously discovered poisoning attacks.

Our work demonstrates that existing Byzantine-robust FL algorithms are significantly more susceptible to model poisoning than previously thought. Motivated by this, we design a defense against FL poisoning, called emph{divide-and-conquer} (DnC). We demonstrate that DnC outperforms all existing Byzantine-robust FL algorithms in defeating model poisoning attacks,
specifically, it is $2.5times$ to $12times$ more resilient in our experiments with different datasets and models.

View More Papers

Data Analytics and Expert Judgment in Time of Crisis:...

Igor Linkov, PhD Senior Science and Technology Manager, US Army Engineer Research and Development Center; Senior Data Analyst (on detail),...

Read More

Effects of Precise and Imprecise Value-Set Analysis (VSA) Information...

Laura Matzen, Michelle A Leger, Geoffrey Reedy (Sandia National Laboratories)

Read More

Sn4ke: Practical Mutation Analysis of Tests at Binary Level

Mohsen Ahmadi (Arizona State University), Pantea Kiaei (Worcester Polytechnic Institute), Navid Emamdoost (University of Minnesota)

Read More

Cross-National Study on Phishing Resilience

Shakthidhar Reddy Gopavaram (Indiana University), Jayati Dev (Indiana University), Marthie Grobler (CSIRO’s Data61), DongInn Kim (Indiana University), Sanchari Das (University...

Read More