Naif Saleh Almakhdhub (Purdue University and King Saud University), Abraham A. Clements (Sandia National Laboratories), Saurabh Bagchi (Purdue University), Mathias Payer (EPFL)

Embedded systems are deployed in security critical environments and have become a prominent target for remote attacks. Microcontroller-based systems (MCUS) are particularly vulnerable due to a combination of limited resources and low level programming which leads to bugs. Since MCUS are often a part of larger systems, vulnerabilities may jeopardize not just the security of the device itself but that of other systems as well. For example, exploiting a WiFi System on Chip (SoC) allows an attacker to hijack the smart phone's application processor.

Control-flow hijacking targeting the backward edge (e.g., Return-Oriented Programming--ROP) remains a threat for MCUS. Current defenses are either susceptible to ROP-style attacks or require special hardware such as a Trusted Execution Environment (TEE) that is not commonly available on MCUS.

We present µRAI, a compiler-based mitigation to emph{prevent} control-flow hijacking attacks targeting backward edges by enforcing the emph{Return Address Integrity (RAI)} property on MCUS. µRAI does not require any additional hardware such as TEE, making it applicable to the wide majority of MCUS. To achieve this, µRAI introduces a technique that moves return addresses from writable memory, to readable and executable memory. It re-purposes a single general purpose register that is never spilled, and uses it to resolve the correct return location. We evaluate against the different control-flow hijacking attacks scenarios targeting return addresses (e.g., arbitrary write), and demonstrate how µRAI prevents them all. Moreover, our evaluation shows that µRAI enforces its protection with negligible overhead.

View More Papers

DESENSITIZATION: Privacy-Aware and Attack-Preserving Crash Report

Ren Ding (Georgia Institute of Technology), Hong Hu (Georgia Institute of Technology), Wen Xu (Georgia Institute of Technology), Taesoo Kim (Georgia Institute of Technology)

Read More

DeepBinDiff: Learning Program-Wide Code Representations for Binary Diffing

Yue Duan (Cornell University), Xuezixiang Li (UC Riverside), Jinghan Wang (UC Riverside), Heng Yin (UC Riverside)

Read More

ABSynthe: Automatic Blackbox Side-channel Synthesis on Commodity Microarchitectures

Ben Gras (Vrije Universiteit Amsterdam, Intel Corporation), Cristiano Giuffrida (Vrije Universiteit Amsterdam), Michael Kurth (Vrije Universiteit Amsterdam), Herbert Bos (Vrije Universiteit Amsterdam), Kaveh Razavi (Vrije Universiteit Amsterdam)

Read More

SurfingAttack: Interactive Hidden Attack on Voice Assistants Using Ultrasonic...

Qiben Yan (Michigan State University), Kehai Liu (Chinese Academy of Sciences), Qin Zhou (University of Nebraska-Lincoln), Hanqing Guo (Michigan State University), Ning Zhang (Washington University in St. Louis)

Read More