Ryan Wails (Georgetown University, U.S. Naval Research Laboratory), George Arnold Sullivan (University of California, San Diego), Micah Sherr (Georgetown University), Rob Jansen (U.S. Naval Research Laboratory)

The understanding of realistic censorship threats enables the development of more resilient censorship circumvention systems, which are vitally important for advancing human rights and fundamental freedoms. We argue that current state-of-the-art methods for detecting circumventing flows in Tor are unrealistic: they are overwhelmed with false positives (> 94%), even when considering conservatively high base rates (10-3). In this paper, we present a new methodology for detecting censorship circumvention in which a deep-learning flow-based classifier is combined with a host-based detection strategy that incorporates information from multiple flows over time. Using over 60,000,000 real-world network flows to over 600,000 destinations, we demonstrate how our detection methods become more precise as they temporally accumulate information, allowing us to detect circumvention servers with perfect recall and no false positives. Our evaluation considers a range of circumventing flow base rates spanning six orders of magnitude and real-world protocol distributions. Our findings suggest that future circumvention system designs need to more carefully consider host-based detection strategies, and we offer suggestions for designs that are more resistant to these attacks.

View More Papers

SOCs lead AI adoption: Transitioning Lessons to the C-Suite

Eric Dull, Drew Walsh, Scott Riede (Deloitte and Touche)

Read More

BliMe: Verifiably Secure Outsourced Computation with Hardware-Enforced Taint Tracking

Hossam ElAtali (University of Waterloo), Lachlan J. Gunn (Aalto University), Hans Liljestrand (University of Waterloo), N. Asokan (University of Waterloo, Aalto University)

Read More

Transforming Raw Authentication Logs into Interpretable Events

Seth Hastings, Tyler Moore, Corey Bolger, Philip Schumway (University of Tulsa)

Read More

Towards generic backward-compatible software upgrades for COSPAS-SARSAT EPIRB 406...

Ahsan Saleem (University of Jyväskylä, Finland), Andrei Costin (University of Jyväskylä, Finland), Hannu Turtiainen (University of Jyväskylä, Finland), Timo Hämäläinen (University of Jyväskylä, Finland)

Read More