Piyush Kumar Sharma (imec-COSIC, KU Leuven), Devashish Gosain (Max Planck Institute for Informatics), Claudia Diaz (Nym Technologies, SA and imec-COSIC, KU Leuven)

Cryptocurrency systems can be subject to deanonymization attacks by exploiting the network-level communication on their peer-to-peer network. Adversaries who control a set of colluding node(s) within the peer-to-peer network can observe transactions being exchanged and infer the parties involved. Thus, various network anonymity schemes have been proposed to mitigate this problem, with some solutions providing theoretical anonymity guarantees.

In this work, we model such peer-to-peer network anonymity solutions and evaluate their anonymity guarantees. To do so, we propose a novel framework that uses Bayesian inference to obtain the probability distributions linking transactions to their possible originators. We characterize transaction anonymity with those distributions, using entropy as metric of adversarial uncertainty on the originator's identity. In particular, we model Dandelion, Dandelion++, and Lightning Network. We study different configurations and demonstrate that none of them offers acceptable anonymity to their users. For instance, our analysis reveals that in the widely deployed Lightning Network, with $1%$ strategically chosen colluding nodes the adversary can uniquely determine the originator for $approx50%$ of the total transactions in the network. In Dandelion, an adversary that controls $15%$ of the nodes has on average uncertainty among only $8$ possible originators. Moreover, we observe that due to the way Dandelion and Dandelion++ are designed, increasing the network size does not correspond to an increase in the anonymity set of potential originators. Alarmingly, our longitudinal analysis of Lightning Network reveals rather an inverse trend---with the growth of the network the overall anonymity decreases.

View More Papers

Fusion: Efficient and Secure Inference Resilient to Malicious Servers

Caiqin Dong (Jinan University), Jian Weng (Jinan University), Jia-Nan Liu (Jinan University), Yue Zhang (Jinan University), Yao Tong (Guangzhou Fongwell Data Limited Company), Anjia Yang (Jinan University), Yudan Cheng (Jinan University), Shun Hu (Jinan University)

Read More

StealthyIMU: Stealing Permission-protected Private Information From Smartphone Voice Assistant...

Ke Sun (University of California San Diego), Chunyu Xia (University of California San Diego), Songlin Xu (University of California San Diego), Xinyu Zhang (University of California San Diego)

Read More

Hope of Delivery: Extracting User Locations From Mobile Instant...

Theodor Schnitzler (Research Center Trustworthy Data Science and Security, TU Dortmund, and Ruhr-Universität Bochum), Katharina Kohls (Radboud University), Evangelos Bitsikas (Northeastern University and New York University Abu Dhabi), Christina Pöpper (New York University Abu Dhabi)

Read More

Adversarial Robustness for Tabular Data through Cost and Utility...

Klim Kireev (EPFL), Bogdan Kulynych (EPFL), Carmela Troncoso (EPFL)

Read More