Harjasleen Malvai (UIUC/IC3), Lefteris Kokoris-Kogias (IST Austria), Alberto Sonnino (Mysten Labs), Esha Ghosh (Microsoft Research), Ercan Oztürk (Meta), Kevin Lewi (Meta), Sean Lawlor (Meta)

Encryption alone is not enough for secure end-to-end encrypted messaging: a server must also honestly serve public keys to users. Key transparency has been presented as an efficient solution for detecting (and hence deterring) a server that attempts to dishonestly serve keys. Key transparency involves two major components: (1) a username to public key mapping, stored and cryptographically committed to by the server, and, (2) an out-of-band consistency protocol for serving short commitments to users. In the setting of real-world deployments and supporting production scale, new challenges must be considered for both of these components. We enumerate these challenges and provide solutions to address them. In particular, we design and implement a memory-optimized and privacy-preserving verifiable data structure for committing to the username to public key store.

To make this implementation viable for production, we also integrate support for persistent and distributed storage. We also propose a future-facing solution, termed "compaction'', as a mechanism for mitigating practical issues that arise from dealing with infinitely growing server data structures. Finally, we implement a consensusless solution that achieves the minimum requirements for a service that consistently distributes commitments for a transparency application, providing a much more efficient protocol for distributing small and consistent commitments to users. This culminates in our production-grade implementation of a key transparency system (Parakeet) which we have open-sourced, along with a demonstration of feasibility through our benchmarks.

View More Papers

SynthDB: Synthesizing Database via Program Analysis for Security Testing...

An Chen (University of Georgia), Jiho Lee (University of Virginia), Basanta Chaulagain (University of Georgia), Yonghwi Kwon (University of Virginia), Kyu Hyung Lee (University of Georgia)

Read More

BARS: Local Robustness Certification for Deep Learning based Traffic...

Kai Wang (Tsinghua University), Zhiliang Wang (Tsinghua University), Dongqi Han (Tsinghua University), Wenqi Chen (Tsinghua University), Jiahai Yang (Tsinghua University), Xingang Shi (Tsinghua University), Xia Yin (Tsinghua University)

Read More

RCABench: Open Benchmarking Platform for Root Cause Analysis

Keisuke Nishimura, Yuichi Sugiyama, Yuki Koike, Masaya Motoda, Tomoya Kitagawa, Toshiki Takatera, Yuma Kurogome (Ricerca Security, Inc.)

Read More

Machine Unlearning of Features and Labels

Alexander Warnecke (TU Braunschweig), Lukas Pirch (TU Braunschweig), Christian Wressnegger (Karlsruhe Institute of Technology (KIT)), Konrad Rieck (TU Braunschweig)

Read More