Kosei Akama (Keio University), Yoshimichi Nakatsuka (ETH Zurich), Masaaki Sato (Tokai University), Keisuke Uehara (Keio University)

Preventing abusive activities caused by adversaries accessing online services at a rate exceeding that expected by websites has become an ever-increasing problem. CAPTCHAs and SMS authentication are widely used to provide a solution by implementing rate limiting, although they are becoming less effective, and some are considered privacy-invasive. In light of this, many studies have proposed better rate-limiting systems that protect the privacy of legitimate users while blocking malicious actors. However, they suffer from one or more shortcomings: (1) assume trust in the underlying hardware and (2) are vulnerable to side-channel attacks.
Motivated by the aforementioned issues, this paper proposes Scrappy: SeCure Rate Assuring Protocol with PrivacY. Scrappy allows clients to generate unforgeable yet unlinkable rate-assuring proofs, which provides the server with cryptographic guarantees that the client is not misbehaving. We design Scrappy using a combination of DAA and hardware security devices. Scrappy is implemented over three types of devices, including one that can immediately be deployed in the real world. Our baseline evaluation shows that the end-to-end latency of Scrappy is minimal, taking only 0.32 seconds, and uses only 679 bytes of bandwidth when transferring necessary data. We also conduct an extensive security evaluation, showing that the rate-limiting capability of Scrappy is unaffected even if the hardware security device is compromised.

View More Papers

On the Security of Satellite-Based Air Traffic Control

Tobias Lüscher (ETH Zurich), Martin Strohmeier (Cyber-Defence Campus, armasuisse S+T), Vincent Lenders (Cyber-Defence Campus, armasuisse S+T)

Read More

From Hardware Fingerprint to Access Token: Enhancing the Authentication...

Yue Xiao (Wuhan University), Yi He (Tsinghua University), Xiaoli Zhang (Zhejiang University of Technology), Qian Wang (Wuhan University), Renjie Xie (Tsinghua University), Kun Sun (George Mason University), Ke Xu (Tsinghua University), Qi Li (Tsinghua University)

Read More

Timing Channels in Adaptive Neural Networks

Ayomide Akinsanya (Stevens Institute of Technology), Tegan Brennan (Stevens Institute of Technology)

Read More

GraphGuard: Detecting and Counteracting Training Data Misuse in Graph...

Bang Wu (CSIRO's Data61/Monash University), He Zhang (Monash University), Xiangwen Yang (Monash University), Shuo Wang (CSIRO's Data61/Shanghai Jiao Tong University), Minhui Xue (CSIRO's Data61), Shirui Pan (Griffith University), Xingliang Yuan (Monash University)

Read More