Kosei Akama (Keio University), Yoshimichi Nakatsuka (ETH Zurich), Masaaki Sato (Tokai University), Keisuke Uehara (Keio University)

Preventing abusive activities caused by adversaries accessing online services at a rate exceeding that expected by websites has become an ever-increasing problem. CAPTCHAs and SMS authentication are widely used to provide a solution by implementing rate limiting, although they are becoming less effective, and some are considered privacy-invasive. In light of this, many studies have proposed better rate-limiting systems that protect the privacy of legitimate users while blocking malicious actors. However, they suffer from one or more shortcomings: (1) assume trust in the underlying hardware and (2) are vulnerable to side-channel attacks.
Motivated by the aforementioned issues, this paper proposes Scrappy: SeCure Rate Assuring Protocol with PrivacY. Scrappy allows clients to generate unforgeable yet unlinkable rate-assuring proofs, which provides the server with cryptographic guarantees that the client is not misbehaving. We design Scrappy using a combination of DAA and hardware security devices. Scrappy is implemented over three types of devices, including one that can immediately be deployed in the real world. Our baseline evaluation shows that the end-to-end latency of Scrappy is minimal, taking only 0.32 seconds, and uses only 679 bytes of bandwidth when transferring necessary data. We also conduct an extensive security evaluation, showing that the rate-limiting capability of Scrappy is unaffected even if the hardware security device is compromised.

View More Papers

Powers of Tau in Asynchrony

Sourav Das (University of Illinois at Urbana-Champaign), Zhuolun Xiang (Aptos), Ling Ren (University of Illinois at Urbana-Champaign)

Read More

UntrustIDE: Exploiting Weaknesses in VS Code Extensions

Elizabeth Lin (North Carolina State University), Igibek Koishybayev (North Carolina State University), Trevor Dunlap (North Carolina State University), William Enck (North Carolina State University), Alexandros Kapravelos (North Carolina State University)

Read More

ORL-AUDITOR: Dataset Auditing in Offline Deep Reinforcement Learning

Linkang Du (Zhejiang University), Min Chen (CISPA Helmholtz Center for Information Security), Mingyang Sun (Zhejiang University), Shouling Ji (Zhejiang University), Peng Cheng (Zhejiang University), Jiming Chen (Zhejiang University), Zhikun Zhang (CISPA Helmholtz Center for Information Security and Stanford University)

Read More

SyzBridge: Bridging the Gap in Exploitability Assessment of Linux...

Xiaochen Zou (UC Riverside), Yu Hao (UC Riverside), Zheng Zhang (UC RIverside), Juefei Pu (UC RIverside), Weiteng Chen (Microsoft Research, Redmond), Zhiyun Qian (UC Riverside)

Read More