Kosei Akama (Keio University), Yoshimichi Nakatsuka (ETH Zurich), Masaaki Sato (Tokai University), Keisuke Uehara (Keio University)

Preventing abusive activities caused by adversaries accessing online services at a rate exceeding that expected by websites has become an ever-increasing problem. CAPTCHAs and SMS authentication are widely used to provide a solution by implementing rate limiting, although they are becoming less effective, and some are considered privacy-invasive. In light of this, many studies have proposed better rate-limiting systems that protect the privacy of legitimate users while blocking malicious actors. However, they suffer from one or more shortcomings: (1) assume trust in the underlying hardware and (2) are vulnerable to side-channel attacks.
Motivated by the aforementioned issues, this paper proposes Scrappy: SeCure Rate Assuring Protocol with PrivacY. Scrappy allows clients to generate unforgeable yet unlinkable rate-assuring proofs, which provides the server with cryptographic guarantees that the client is not misbehaving. We design Scrappy using a combination of DAA and hardware security devices. Scrappy is implemented over three types of devices, including one that can immediately be deployed in the real world. Our baseline evaluation shows that the end-to-end latency of Scrappy is minimal, taking only 0.32 seconds, and uses only 679 bytes of bandwidth when transferring necessary data. We also conduct an extensive security evaluation, showing that the rate-limiting capability of Scrappy is unaffected even if the hardware security device is compromised.

View More Papers

Designing and Evaluating a Testbed for the Matter Protocol:...

Ravindra Mangar (Dartmouth College) Jingyu Qian (University of Illinois), Wondimu Zegeye (Morgan State University), Abdulrahman AlRabah, Ben Civjan, Shalni Sundram, Sam Yuan, Carl A. Gunter (University of Illinois), Mounib Khanafer (American University of Kuwait), Kevin Kornegay (Morgan State University), Timothy J. Pierson, David Kotz (Dartmouth College)

Read More

AdvCAPTCHA: Creating Usable and Secure Audio CAPTCHA with Adversarial...

Hao-Ping (Hank) Lee (Carnegie Mellon University), Wei-Lun Kao (National Taiwan University), Hung-Jui Wang (National Taiwan University), Ruei-Che Chang (University of Michigan), Yi-Hao Peng (Carnegie Mellon University), Fu-Yin Cherng (National Chung Cheng University), Shang-Tse Chen (National Taiwan University)

Read More

BliMe: Verifiably Secure Outsourced Computation with Hardware-Enforced Taint Tracking

Hossam ElAtali (University of Waterloo), Lachlan J. Gunn (Aalto University), Hans Liljestrand (University of Waterloo), N. Asokan (University of Waterloo, Aalto University)

Read More

SigmaDiff: Semantics-Aware Deep Graph Matching for Pseudocode Diffing

Lian Gao (University of California Riverside), Yu Qu (University of California Riverside), Sheng Yu (University of California, Riverside & Deepbits Technology Inc.), Yue Duan (Singapore Management University), Heng Yin (University of California, Riverside & Deepbits Technology Inc.)

Read More