Vasilios Mavroudis (University College London), Karl Wüst (ETH Zurich), Aritra Dhar (ETH Zurich), Kari Kostiainen (ETH Zurich), Srdjan Capkun (ETH Zurich)

Permissionless blockchains offer many advantages but also have significant limitations including high latency. This prevents their use in important scenarios such as retail payments, where merchants should approve payments fast. Prior works have attempted to mitigate this problem by moving transactions off the chain. However, such Layer-2 solutions have their own problems: payment channels require a separate deposit towards each merchant and thus significant locked-in funds from customers; payment hubs require very large operator deposits that depend on the number of customers; and side-chains require trusted validators.

In this paper, we propose Snappy, a novel solution that enables recipients, like merchants, to safely accept fast payments. In Snappy, all payments are on the chain, while small customer collaterals and moderate merchant collaterals act as payment guarantees. Besides receiving payments, merchants also act as statekeepers who collectively track and approve incoming payments using majority voting. In case of a double-spending attack, the victim merchant can recover lost funds either from the collateral of the malicious customer or a colluding statekeeper (merchant). Snappy overcomes the main problems of previous solutions: a single customer collateral can be used to shop with many merchants; merchant collaterals are independent of the number of customers; and validators do not have to be trusted. Our Ethereum prototype shows that safe, fast (<2 seconds) and cheap payments are possible on existing blockchains.

View More Papers

On the Resilience of Biometric Authentication Systems against Random...

Benjamin Zi Hao Zhao (University of New South Wales and Data61 CSIRO), Hassan Jameel Asghar (Macquarie University and Data61 CSIRO), Mohamed Ali Kaafar (Macquarie University and Data61 CSIRO)

Read More

Genotype Extraction and False Relative Attacks: Security Risks to...

Peter Ney (University of Washington), Luis Ceze (University of Washington), Tadayoshi Kohno (University of Washington)

Read More

Broken Metre: Attacking Resource Metering in EVM

Daniel Perez (Imperial College London), Benjamin Livshits (Imperial College London, UCL Centre for Blockchain Technologies, and Brave Software)

Read More

SurfingAttack: Interactive Hidden Attack on Voice Assistants Using Ultrasonic...

Qiben Yan (Michigan State University), Kehai Liu (Chinese Academy of Sciences), Qin Zhou (University of Nebraska-Lincoln), Hanqing Guo (Michigan State University), Ning Zhang (Washington University in St. Louis)

Read More