Guangke Chen (Pengcheng Laboratory), Yedi Zhang (National University of Singapore), Fu Song (Key Laboratory of System Software (Chinese Academy of Sciences) and State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Science; Nanjing Institute of Software Technology), Ting Wang (Stony Brook University), Xiaoning Du (Monash University), Yang Liu (Nanyang Technological University)

Singing voice conversion (SVC) automates song covers by converting a source singing voice from a source singer into a new singing voice with the same lyrics and melody as the source, but sounds like being covered by the target singer of some given target singing voices. However, it raises serious concerns about copyright and civil right infringements. We propose SongBsAb, the first proactive approach to tackle SVC-based illegal song covers. SongBsAb adds perturbations to singing voices before releasing them, so that when they are used, the process of SVC will be interfered, leading to unexpected singing voices. Perturbations are carefully crafted to (1) provide a dual prevention, i.e., preventing the singing voice from being used as the source and target singing voice in SVC, by proposing a gender-transformation loss and a high/low hierarchy multi-target loss, respectively; and (2) be harmless, i.e., no side-effect on the enjoyment of protected songs, by refining a psychoacoustic model-based loss with the backing track as an additional masker, a unique accompanying element for singing voices compared to ordinary speech voices. We also adopt a frame-level interaction reduction-based loss and encoder ensemble to enhance the transferability of SongBsAb to unknown SVC models. We demonstrate the prevention effectiveness, harmlessness, and robustness of SongBsAb on five diverse and promising SVC models, using both English and Chinese datasets, and both objective and human study-based subjective metrics. Our work fosters an emerging research direction for mitigating illegal automated song covers.

View More Papers

Secure Data Analytics in Apache Spark with Fine-grained Policy...

Byeongwook Kim (Seoul National University), Jaewon Hur (Seoul National University), Adil Ahmad (Arizona State University), Byoungyoung Lee (Seoul National University)

Read More

type++: Prohibiting Type Confusion with Inline Type Information

Nicolas Badoux (EPFL), Flavio Toffalini (Ruhr-Universität Bochum, EPFL), Yuseok Jeon (UNIST), Mathias Payer (EPFL)

Read More

Defending Against Membership Inference Attacks on Iteratively Pruned Deep...

Jing Shang (Beijing Jiaotong University), Jian Wang (Beijing Jiaotong University), Kailun Wang (Beijing Jiaotong University), Jiqiang Liu (Beijing Jiaotong University), Nan Jiang (Beijing University of Technology), Md Armanuzzaman (Northeastern University), Ziming Zhao (Northeastern University)

Read More

Unleashing the Power of Generative Model in Recovering Variable...

Xiangzhe Xu (Purdue University), Zhuo Zhang (Purdue University), Zian Su (Purdue University), Ziyang Huang (Purdue University), Shiwei Feng (Purdue University), Yapeng Ye (Purdue University), Nan Jiang (Purdue University), Danning Xie (Purdue University), Siyuan Cheng (Purdue University), Lin Tan (Purdue University), Xiangyu Zhang (Purdue University)

Read More