Guangke Chen (Pengcheng Laboratory), Yedi Zhang (National University of Singapore), Fu Song (Key Laboratory of System Software (Chinese Academy of Sciences) and State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Science; Nanjing Institute of Software Technology), Ting Wang (Stony Brook University), Xiaoning Du (Monash University), Yang Liu (Nanyang Technological University)

Singing voice conversion (SVC) automates song covers by converting a source singing voice from a source singer into a new singing voice with the same lyrics and melody as the source, but sounds like being covered by the target singer of some given target singing voices. However, it raises serious concerns about copyright and civil right infringements. We propose SongBsAb, the first proactive approach to tackle SVC-based illegal song covers. SongBsAb adds perturbations to singing voices before releasing them, so that when they are used, the process of SVC will be interfered, leading to unexpected singing voices. Perturbations are carefully crafted to (1) provide a dual prevention, i.e., preventing the singing voice from being used as the source and target singing voice in SVC, by proposing a gender-transformation loss and a high/low hierarchy multi-target loss, respectively; and (2) be harmless, i.e., no side-effect on the enjoyment of protected songs, by refining a psychoacoustic model-based loss with the backing track as an additional masker, a unique accompanying element for singing voices compared to ordinary speech voices. We also adopt a frame-level interaction reduction-based loss and encoder ensemble to enhance the transferability of SongBsAb to unknown SVC models. We demonstrate the prevention effectiveness, harmlessness, and robustness of SongBsAb on five diverse and promising SVC models, using both English and Chinese datasets, and both objective and human study-based subjective metrics. Our work fosters an emerging research direction for mitigating illegal automated song covers.

View More Papers

Scale-MIA: A Scalable Model Inversion Attack against Secure Federated...

Shanghao Shi (Virginia Tech), Ning Wang (University of South Florida), Yang Xiao (University of Kentucky), Chaoyu Zhang (Virginia Tech), Yi Shi (Virginia Tech), Y. Thomas Hou (Virginia Polytechnic Institute and State University), Wenjing Lou (Virginia Polytechnic Institute and State University)

Read More

The Philosopher’s Stone: Trojaning Plugins of Large Language Models

Tian Dong (Shanghai Jiao Tong University), Minhui Xue (CSIRO's Data61), Guoxing Chen (Shanghai Jiao Tong University), Rayne Holland (CSIRO's Data61), Yan Meng (Shanghai Jiao Tong University), Shaofeng Li (Southeast University), Zhen Liu (Shanghai Jiao Tong University), Haojin Zhu (Shanghai Jiao Tong University)

Read More

Balancing Privacy and Data Utilization: A Comparative Vignette Study...

Leona Lassak (Ruhr University Bochum), Hanna Püschel (TU Dortmund University), Oliver D. Reithmaier (Leibniz University Hannover), Tobias Gostomzyk (TU Dortmund University), Markus Dürmuth (Leibniz University Hannover)

Read More

On the Realism of LiDAR Spoofing Attacks against Autonomous...

Takami Sato (University of California, Irvine), Ryo Suzuki (Keio University), Yuki Hayakawa (Keio University), Kazuma Ikeda (Keio University), Ozora Sako (Keio University), Rokuto Nagata (Keio University), Ryo Yoshida (Keio University), Qi Alfred Chen (University of California, Irvine), Kentaro Yoshioka (Keio University)

Read More