Huadi Zhu (The University of Texas at Arlington), Mingyan Xiao (The University of Texas at Arlington), Demoria Sherman (The University of Texas at Arlington), Ming Li (The University of Texas at Arlington)

Virtual Reality (VR) has shown promising potential in many applications, such as e-business, healthcare, and social networking. Rich information regarding users' activities and online accounts is stored in VR devices. If {they are} carelessly unattended, adversarial access will cause data breaches and other critical consequences. Practical user authentication schemes for VR devices are in dire need. Current solutions, including passwords, digital PINs, and pattern locks, mostly follow conventional approaches for general personal devices. They have been criticized for deficits in both security and usability. In this work, we propose SoundLock, a novel user authentication scheme for VR devices using auditory-pupillary response as biometrics. During authentication, auditory stimuli are presented to the user via the VR headset. The corresponding pupillary response is captured by the integrated eye tracker. User's legitimacy is then determined by comparing the response with the template generated during the enrollment stage. To strike a balance between security and usability in the scheme design, an optimization problem is formulated. Due to its non-linearity, a two-stage heuristic algorithm is proposed to solve it efficiently. The solution provides necessary guidance for selecting effective auditory stimuli and determining their corresponding lengths. We demonstrate through extensive in-field experiments that SoundLock outperforms state-of-the-art biometric solutions with FAR (FRR) as low as 0.76% (0.91%) and is well received among participants in the user study.

View More Papers

Location Spoofing Attacks on Autonomous Fleets

Jinghan Yang, Andew Estornell, Yevgeniy Vorobeychik (Washington University in St. Louis)

Read More

How to Count Bots in Longitudinal Datasets of IP...

Leon Böck (Technische Universität Darmstadt), Dave Levin (University of Maryland), Ramakrishna Padmanabhan (CAIDA), Christian Doerr (Hasso Plattner Institute), Max Mühlhäuser (Technical University of Darmstadt)

Read More

RCABench: Open Benchmarking Platform for Root Cause Analysis

Keisuke Nishimura, Yuichi Sugiyama, Yuki Koike, Masaya Motoda, Tomoya Kitagawa, Toshiki Takatera, Yuma Kurogome (Ricerca Security, Inc.)

Read More

WIP: The Feasibility of High-performance Message Authentication in Automotive...

Evan Allen (Virginia Tech), Zeb Bowden (Virginia Tech Transportation Institute), Randy Marchany (Virginia Tech), J. Scot Ransbottom (Virginia Tech)

Read More