Wenjie Qu (Huazhong University of Science and Technology), Jinyuan Jia (University of Illinois Urbana-Champaign), Neil Zhenqiang Gong (Duke University)

Encoder as a service is an emerging cloud service. Specifically, a service provider first pre-trains an encoder (i.e., a general-purpose feature extractor) via either supervised learning or self-supervised learning and then deploys it as a cloud service API. A client queries the cloud service API to obtain feature vectors for its training/testing inputs when training/testing its classifier (called downstream classifier). A downstream classifier is vulnerable to adversarial examples, which are testing inputs with carefully crafted perturbation that the downstream classifier misclassifies. Therefore, in safety and security critical applications, a client aims to build a robust downstream classifier and certify its robustness guarantees against adversarial examples.

What APIs should the cloud service provide, such that a client can use any certification method to certify the robustness of its downstream classifier against adversarial examples while minimizing the number of queries to the APIs? How can a service provider pre-train an encoder such that clients can build more certifiably robust downstream classifiers? We aim to answer the two questions in this work. For the first question, we show that the cloud service only needs to provide two APIs, which we carefully design, to enable a client to certify the robustness of its downstream classifier with a minimal number of queries to the APIs. For the second question, we show that an encoder pre-trained using a spectral-norm regularization term enables clients to build more robust downstream classifiers.

View More Papers

Attacks as Defenses: Designing Robust Audio CAPTCHAs Using Attacks...

Hadi Abdullah (Visa Research), Aditya Karlekar (University of Florida), Saurabh Prasad (University of Florida), Muhammad Sajidur Rahman (University of Florida), Logan Blue (University of Florida), Luke A. Bauer (University of Florida), Vincent Bindschaedler (University of Florida), Patrick Traynor (University of Florida)

Read More

Cybersecurity of COSPAS-SARSAT and EPIRB: threat and attacker models,...

Andrei Costin, Hannu Turtiainen, Syed Khandkher and Timo Hamalainen (Faculty of Information Technology, University of Jyvaskyla, Finland) Presenter: Andrei Costin

Read More

Anomaly Detection in the Open World: Normality Shift Detection,...

Dongqi Han (Tsinghua University), Zhiliang Wang (Tsinghua University), Wenqi Chen (Tsinghua University), Kai Wang (Tsinghua University), Rui Yu (Tsinghua University), Su Wang (Tsinghua University), Han Zhang (Tsinghua University), Zhihua Wang (State Grid Shanghai Municipal Electric Power Company), Minghui Jin (State Grid Shanghai Municipal Electric Power Company), Jiahai Yang (Tsinghua University), Xingang Shi (Tsinghua University), Xia…

Read More

Lightning Community Shout-Outs to:

(1) Jonathan Petit, Secure ML Performance Benchmark (Qualcomm) (2) David Balenson, The Road to Future Automotive Research Datasets: PIVOT Project and Community Workshop (USC Information Sciences Institute) (3) Jeremy Daily, CyberX Challenge Events (Colorado State University) (4) Mert D. Pesé, DETROIT: Data Collection, Translation and Sharing for Rapid Vehicular App Development (Clemson University) (5) Ning…

Read More