Hang Zhang (Indiana University Bloomington), Jangha Kim (The Affiliated Institute of ETRI, ROK), Chuhong Yuan (Georgia Institute of Technology), Zhiyun Qian (University of California, Riverside), Taesoo Kim (Georgia Institute of Technology)

Use-After-Free (UAF) is one of the most widely spread and severe memory safety issues, attracting lots of research efforts toward its automatic discovery. Existing UAF detection approaches include two major categories: dynamic and static. While dynamic methods like fuzzing can detect UAF issues with high precision, they are inherently limited in code coverage. Static approaches, on the other hand, can usually only discover simple sequential UAF cases, despite that many real-world UAF bugs involve intricate cross-entry control and data flows (e.g., concurrent UAFs). Limited static tools supporting cross-entry UAF detection also suffer from inaccuracy or narrowed scope (e.g., cannot handle complex codebases like the Linux kernel).

In this paper, we propose UAFX, a static analyzer capable of discovering cross-entry UAF vulnerabilities in the Linux kernel and potentially extensible to general C programs. UAFX is powered by a novel escape-fetch-based cross-entry alias analysis, enabling it to accurately analyze the alias relationships between the use and free sites even when they scatter in different entry functions. UAFX is also equipped with a systematic UAF validation framework based on partial-order constraints, allowing it to reliably reason about multiple UAF-related code aspects (e.g., locks, path conditions, threads) to filter out false alarms. Our evaluation shows that UAFX can discover new cross-entry UAF vulnerabilities in the kernel and one user-space program (80 true positive warnings), with reasonable reviewer-perceived precision (more than 40%) and performance.

View More Papers

“Where Are We On Cyber?” – A Qualitative Study...

Jens Christian Opdenbusch (Ruhr University Bochum), Jonas Hielscher (Ruhr University Bochum), M. Angela Sasse (Ruhr University Bochum, University College London)

Read More

Rondo: Scalable and Reconfiguration-Friendly Randomness Beacon

Xuanji Meng (Tsinghua University), Xiao Sui (Shandong University), Zhaoxin Yang (Tsinghua University), Kang Rong (Blockchain Platform Division,Ant Group), Wenbo Xu (Blockchain Platform Division,Ant Group), Shenglong Chen (Blockchain Platform Division,Ant Group), Ying Yan (Blockchain Platform Division,Ant Group), Sisi Duan (Tsinghua University)

Read More

Revisiting Concept Drift in Windows Malware Detection: Adaptation to...

Adrian Shuai Li (Purdue University), Arun Iyengar (Intelligent Data Management and Analytics, LLC), Ashish Kundu (Cisco Research), Elisa Bertino (Purdue University)

Read More

Careful About What App Promotion Ads Recommend! Detecting and...

Shang Ma (University of Notre Dame), Chaoran Chen (University of Notre Dame), Shao Yang (Case Western Reserve University), Shifu Hou (University of Notre Dame), Toby Jia-Jun Li (University of Notre Dame), Xusheng Xiao (Arizona State University), Tao Xie (Peking University), Yanfang Ye (University of Notre Dame)

Read More