Jonghoon Kwon (ETH), Taeho Lee (ETH), Claude Hähni (ETH), Adrian Perrig (ETH)

Network isolation is a critical modern Internet service. To date, network operators have created a logical network of distributed systems to provide communication isolation between different parties. However, the current network isolation is limited in scalability and flexibility. It limits the number of virtual networks and it only supports isolation at host (or virtual-machine) granularity. In this paper, we introduce Scalable Virtual Local Area Networking (SVLAN) that scales to a large number of distributed systems and offers improved flexibility in providing secure network isolation. With the notion of destination-driven reachability and packet-carrying forwarding state, SVLAN not only offers communication isolation but isolation can be specified at different granularities, e.g., per-application or per-process. Our proof-of-concept SVLAN implementation demonstrates its feasibility and practicality for real-world applications.

View More Papers

Finding Safety in Numbers with Secure Allegation Escrows

Venkat Arun (Massachusetts Institute of Technology), Aniket Kate (Purdue University), Deepak Garg (Max Planck Institute for Software Systems), Peter Druschel (Max Planck Institute for Software Systems), Bobby Bhattacharjee (University of Maryland)

Read More

PhantomCache: Obfuscating Cache Conflicts with Localized Randomization

Qinhan Tan (Zhejiang University), Zhihua Zeng (Zhejiang University), Kai Bu (Zhejiang University), Kui Ren (Zhejiang University)

Read More

Revisiting Leakage Abuse Attacks

Laura Blackstone (Brown University), Seny Kamara (Brown University), Tarik Moataz (Brown University)

Read More

When Match Fields Do Not Need to Match: Buffered...

Jiahao Cao (Tsinghua University; George Mason University), Renjie Xie (Tsinghua University), Kun Sun (George Mason University), Qi Li (Tsinghua University), Guofei Gu (Texas A&M University), Mingwei Xu (Tsinghua University)

Read More