Anxiao He (Zhejiang University), Jiandong Fu (Zhejiang University), Kai Bu (Zhejiang University), Ruiqi Zhou (Zhejiang University), Chenlu Miao (Zhejiang University), Kui Ren (Zhejiang University)

Path validation has long been explored as a fundamental solution to secure future Internet architectures. It enables end-hosts to specify forwarding paths for their traffic and to verify whether the traffic follows the specified paths. In comparison with the current Internet architecture that keeps packet forwarding uncontrolled and transparent to end-hosts, path validation benefits end-hosts with flexibility, security, and privacy. The key design enforces routers to embed their credentials into cryptographic proofs in packet headers. Such proofs require sufficiently complex computation to guarantee unforgeability. This imposes an inevitable barrier on validation efficiency for a single packet. In this paper, we propose aggregate validation to implement path validation in a group-wise way. Amortizing overhead across packets in a group, aggregate validation promises higher validation efficiency without sacrificing security. We implement aggregation validation through Symphony, with various design techniques integrated and security properties formally proved. In comparison with state-of-the-art EPIC, Symphony speeds up packet processing by 3.78 ×∼ 18.40 × and increases communication throughput by 1.13 ×∼ 6.11 ×.

View More Papers

On the Vulnerability of Traffic Light Recognition Systems to...

Sri Hrushikesh Varma Bhupathiraju (University of Florida), Takami Sato (University of California, Irvine), Michael Clifford (Toyota Info Labs), Takeshi Sugawara (The University of Electro-Communications), Qi Alfred Chen (University of California, Irvine), Sara Rampazzi (University of Florida)

Read More

Programmer's Perception of Sensitive Information in Code

Xinyao Ma, Ambarish Aniruddha Gurjar, Anesu Christopher Chaora, Tatiana R Ringenberg, L. Jean Camp (Luddy School of Informatics, Computing, and Engineering, Indiana University Bloomington)

Read More

Decentralized Information-Flow Control for ROS2

Nishit V. Pandya (Indian Institute of Science Bangalore), Himanshu Kumar (Indian Institute of Science Bangalore), Gokulnath M. Pillai (Indian Institute of Science Bangalore), Vinod Ganapathy (Indian Institute of Science Bangalore)

Read More

Maginot Line: Assessing a New Cross-app Threat to PII-as-Factor...

Fannv He (National Computer Network Intrusion Protection Center, University of Chinese Academy of Sciences, China), Yan Jia (DISSec, College of Cyber Science, Nankai University, China), Jiayu Zhao (National Computer Network Intrusion Protection Center, University of Chinese Academy of Sciences, China), Yue Fang (National Computer Network Intrusion Protection Center, University of Chinese Academy of Sciences, China),…

Read More