Cherin Lim, Tianhao Xu, Prashanth Rajivan (University of Washington)

Human trust is critical for the adoption and continued use of autonomous vehicles (AVs). Experiencing vehicle failures that stem from security threats to underlying technologies that enable autonomous driving, can significantly degrade drivers’ trust in AVs. It is crucial to understand and measure how security threats to AVs impact human trust. To this end, we conducted a driving simulator study with forty participants who underwent three drives including one that had simulated cybersecurity attacks. We hypothesize drivers’ trust in the vehicle is reflected through drivers’ body posture, foot movement, and engagement with vehicle controls during the drive. To test this hypothesis, we extracted body posture features from each frame in the video recordings, computed skeletal angles, and performed k-means clustering on these values to classify drivers’ foot positions. In this paper, we present an algorithmic pipeline for automatic analysis of body posture and objective measurement of trust that could be used for building AVs capable of trust calibration after security attack events.

View More Papers

A Preliminary Study on Using Large Language Models in...

Kumar Shashwat, Francis Hahn, Xinming Ou, Dmitry Goldgof, Jay Ligatti, Larrence Hall (University of South Florida), S. Raj Rajagoppalan (Resideo), Armin Ziaie Tabari (CipherArmor)

Read More

Information Based Heavy Hitters for Real-Time DNS Data Exfiltration...

Yarin Ozery (Ben-Gurion University of the Negev, Akamai Technologies inc.), Asaf Nadler (Ben-Gurion University of the Negev), Asaf Shabtai (Ben-Gurion University of the Negev)

Read More

The Fault in Our Stars: An Analysis of GitHub...

Simon Koch, David Klein, and Martin Johns (TU Braunschweig)

Read More

It’s Standards’ Time to Shine: Insights for IoT Cybersecurity...

Dr. Michael J. Fagan, National Institute of Standards and Technology

Read More