Cherin Lim, Tianhao Xu, Prashanth Rajivan (University of Washington)

Human trust is critical for the adoption and continued use of autonomous vehicles (AVs). Experiencing vehicle failures that stem from security threats to underlying technologies that enable autonomous driving, can significantly degrade drivers’ trust in AVs. It is crucial to understand and measure how security threats to AVs impact human trust. To this end, we conducted a driving simulator study with forty participants who underwent three drives including one that had simulated cybersecurity attacks. We hypothesize drivers’ trust in the vehicle is reflected through drivers’ body posture, foot movement, and engagement with vehicle controls during the drive. To test this hypothesis, we extracted body posture features from each frame in the video recordings, computed skeletal angles, and performed k-means clustering on these values to classify drivers’ foot positions. In this paper, we present an algorithmic pipeline for automatic analysis of body posture and objective measurement of trust that could be used for building AVs capable of trust calibration after security attack events.

View More Papers

WIP: Auditing Artist Style Pirate in Text-to-image Generation Models

Linkang Du (Zhejiang University), Zheng Zhu (Zhejiang University), Min Chen (CISPA Helmholtz Center for Information Security), Shouling Ji (Zhejiang University), Peng Cheng (Zhejiang University), Jiming Chen (Zhejiang University), Zhikun Zhang (Stanford University)

Read More

Automatic Adversarial Adaption for Stealthy Poisoning Attacks in Federated...

Torsten Krauß (University of Würzburg), Jan König (University of Würzburg), Alexandra Dmitrienko (University of Wuerzburg), Christian Kanzow (University of Würzburg)

Read More

Scrappy: SeCure Rate Assuring Protocol with PrivacY

Kosei Akama (Keio University), Yoshimichi Nakatsuka (ETH Zurich), Masaaki Sato (Tokai University), Keisuke Uehara (Keio University)

Read More