Jinfeng Li (Zhejiang University), Shouling Ji (Zhejiang University), Tianyu Du (Zhejiang University), Bo Li (University of California, Berkeley), Ting Wang (Lehigh University)

Deep Learning-based Text Understanding (DLTU) is the backbone technique behind various applications, including question answering, machine translation, and text classification. Despite its tremendous popularity, the security vulnerabilities of DLTU are still largely unknown, which is highly concerning given its increasing use in security-sensitive applications such as user sentiment analysis and toxic content detection. In this paper, we show that DLTU is inherently vulnerable to adversarial text attacks, in which maliciously crafted text triggers target DLTU systems and services to misbehave. Specifically, we present TextBugger, a general attack framework for generating adversarial text. In contrast of prior work, TextBugger differs in significant ways: (i) effective -- it outperforms state-of-the-art attacks in terms of attack success rate; (ii) evasive -- it preserves the utility of benign text, with 94.9% of the adversarial text correctly recognized by human readers; and (iii) efficient -- it generates adversarial text with computational complexity sub-linear to the text length. We empirically evaluate TextBugger on a set of real-world DLTU systems and services used for sentiment analysis and toxic content detection, demonstrating its effectiveness, evasiveness, and efficiency. For instance, TextBugger achieves 100% success rate on the IMDB dataset based on Amazon AWS Comprehend within 4.61 seconds and preserves 97% semantic similarity. We further discuss possible defense mechanisms to mitigate such attack and the adversary's potential countermeasures, which leads to promising directions for further research.

View More Papers

SABRE: Protecting Bitcoin against Routing Attacks

Maria Apostolaki (ETH Zurich), Gian Marti (ETH Zurich), Jan Müller (ETH Zurich), Laurent Vanbever (ETH Zurich)

Read More

Cybercriminal Minds: An investigative study of cryptocurrency abuses in...

Seunghyeon Lee (KAIST, S2W LAB Inc.), Changhoon Yoon (S2W LAB Inc.), Heedo Kang (KAIST), Yeonkeun Kim (KAIST), Yongdae Kim (KAIST), Dongsu Han (KAIST), Sooel Son (KAIST), Seungwon Shin (KAIST, S2W LAB Inc.)

Read More

Please Forget Where I Was Last Summer: The Privacy...

Kostas Drakonakis (FORTH, Greece), Panagiotis Ilia (FORTH, Greece), Sotiris Ioannidis (FORTH, Greece), Jason Polakis (University of Illinois at Chicago, USA)

Read More

ICSREF: A Framework for Automated Reverse Engineering of Industrial...

Anastasis Keliris (NYU), Michail Maniatakos (NYU Abu Dhabi)

Read More