Cheng Feng (Imperial College London & Siemens Corporate Technology), Venkata Reddy Palleti (Singapore University of Technology and Design), Aditya Mathur (Singapore University of Technology and Design), Deeph Chana (Imperial College London)

Industrial Control Systems (ICS) consisting of integrated hardware and software components designed to monitor and control a variety of industrial processes, are typically deployed in critical infrastructures such as water treatment plants, power grids and gas pipelines. Unlike conventional IT systems, the consequences of deviations from normal operation in ICS have the potential to cause significant physical damage to equipment, the environment and even human life. The active monitoring of invariant rules that define the physical conditions that must be maintained for the normal operation of ICS provides a means to improve the security and dependability of such systems by which early detection of anomalous system states may be achieved, allowing for timely mitigating actions -- such as fault checking, system shutdown -- to be taken. Generally, invariant rules are pre-defined by system engineers during the design phase of a given ICS build. However, this manually intensive process is costly, error-prone and, in typically complex systems, sub-optimal. In this paper we propose a novel framework that is designed to systematically generate invariant rules from information contained within ICS operational data logs, using a combination of several machine learning and data mining techniques. The effectiveness of our approach is demonstrated by experiments on two real world ICS testbeds: a water distribution system and a water treatment plant. We show that sets of invariant rules, far larger than those defined manually, can be successfully derived by our framework and that they may be used to deliver significant improvements in anomaly detection compared with the invariant rules defined by system engineers as well as the commonly used residual error-based anomaly detection model for ICS.

View More Papers

Automating Patching of Vulnerable Open-Source Software Versions in Application...

Ruian Duan (Georgia Institute of Technology), Ashish Bijlani (Georgia Institute of Technology), Yang Ji (Georgia Institute of Technology), Omar Alrawi (Georgia Institute of Technology), Yiyuan Xiong (Peking University), Moses Ike (Georgia Institute of Technology), Brendan Saltaformaggio (Georgia Institute of Technology), Wenke Lee (Georgia Institute of Technology)

Read More

Giving State to the Stateless: Augmenting Trustworthy Computation with...

Gabriel Kaptchuk (Johns Hopkins University), Matthew Green (Johns Hopkins University), Ian Miers (Cornell Tech)

Read More

Anonymous Multi-Hop Locks for Blockchain Scalability and Interoperability

Giulio Malavolta (Friedrich-Alexander University Erlangen-Nürnberg), Pedro Moreno Sanchez (TU Wien), Clara Schneidewind (TU Wien), Aniket Kate (Purdue University), Matteo Maffei (TU Wien)

Read More

MBeacon: Privacy-Preserving Beacons for DNA Methylation Data

Inken Hagestedt (CISPA Helmholtz Center for Information Security), Yang Zhang (CISPA Helmholtz Center for Information Security), Mathias Humbert (Swiss Data Science Center, ETH Zurich/EPFL), Pascal Berrang (CISPA Helmholtz Center for Information Security), Haixu Tang (Indiana University Bloomington), XiaoFeng Wang (Indiana University Bloomington), Michael Backes (CISPA Helmholtz Center for Information Security)

Read More