Zheyu Ma (Institute for Network Sciences and Cyberspace (INSC), Tsinghua University; EPFL; JCSS, Tsinghua University (INSC) - Science City (Guangzhou) Digital Technology Group Co., Ltd.), Qiang Liu (EPFL), Zheming Li (Institute for Network Sciences and Cyberspace (INSC), Tsinghua University; JCSS, Tsinghua University (INSC) - Science City (Guangzhou) Digital Technology Group Co., Ltd.), Tingting Yin (Zhongguancun Laboratory), Wende Tan (Department of Computer Science and Technology, Tsinghua University), Chao Zhang (Institute for Network Sciences and Cyberspace (INSC), Tsinghua University; Zhongguancun Laboratory; JCSS, Tsinghua University (INSC) - Science City (Guangzhou) Digital Technology Group Co., Ltd.), Mathias Payer (EPFL)

Virtual devices are a large attack surface of hypervisors. Vulnerabilities in virtual devices may enable attackers to jailbreak hypervisors or even endanger co-located virtual machines. While fuzzing has discovered vulnerabilities in virtual devices across both open-source and closed-source hypervisors, the efficiency of these virtual device fuzzers remains limited because they are unaware of the complex behaviors of virtual devices in general. We present Truman, a novel universal fuzzing engine that automatically infers dependencies from open-source OS drivers to construct device behavior models (DBMs) for virtual device fuzzing, regardless of whether target virtual devices are open-source or binaries. The DBM includes inter- and intra-message dependencies and fine-grained state dependency of virtual device messages. Based on the DBM, Truman generates and mutates quality seeds that satisfy the dependencies encoded in the DBM. We evaluate the prototype of Truman on the latest version of hypervisors. In terms of coverage, Truman outperformed start-of-the-art fuzzers for 19/29 QEMU devices and obtained a relative coverage boost of 34% compared to Morphuzz for virtio devices. Additionally, Truman discovered 54 new bugs in QEMU, VirtualBox, VMware Workstation Pro, and Parallels, with 6 CVEs assigned.

View More Papers

A Field Study to Uncover and a Tool to...

Leon Kersten (Eindhoven University of Technology), Kim Beelen (Eindhoven University of Technology), Emmanuele Zambon (Eindhoven University of Technology), Chris Snijders (Eindhoven University of Technology), Luca Allodi (Eindhoven University of Technology)

Read More

Density Boosts Everything: A One-stop Strategy for Improving Performance,...

Jianwen Tian (Academy of Military Sciences), Wei Kong (Zhejiang Sci-Tech University), Debin Gao (Singapore Management University), Tong Wang (Academy of Military Sciences), Taotao Gu (Academy of Military Sciences), Kefan Qiu (Beijing Institute of Technology), Zhi Wang (Nankai University), Xiaohui Kuang (Academy of Military Sciences)

Read More

CCTAG: Configurable and Combinable Tagged Architecture

Zhanpeng Liu (Peking University), Yi Rong (Tsinghua University), Chenyang Li (Peking University), Wende Tan (Tsinghua University), Yuan Li (Zhongguancun Laboratory), Xinhui Han (Peking University), Songtao Yang (Zhongguancun Laboratory), Chao Zhang (Tsinghua University)

Read More

Do We Really Need to Design New Byzantine-robust Aggregation...

Minghong Fang (University of Louisville), Seyedsina Nabavirazavi (Florida International University), Zhuqing Liu (University of North Texas), Wei Sun (Wichita State University), Sundararaja Iyengar (Florida International University), Haibo Yang (Rochester Institute of Technology)

Read More