Nicolas Badoux (EPFL), Flavio Toffalini (Ruhr-Universität Bochum, EPFL), Yuseok Jeon (UNIST), Mathias Payer (EPFL)

Type confusion, or bad casting, is a common C++ attack vector. Such vulnerabilities cause a program to interpret an object as belonging to a different type, enabling powerful attacks, like control-flow hijacking. C++ limits runtime checks to polymorphic classes because only those have inline type information. The lack of runtime type information throughout an object’s lifetime makes it challenging to enforce continuous checks and thereby prevent type confusion during downcasting. Current solutions either record type information for all objects disjointly, incurring prohibitive runtime overhead, or restrict protection to a fraction of all objects.
Our C++ dialect, type++, enforces the paradigm that each allocated object involved in downcasting carries type information throughout its lifetime, ensuring correctness by enabling type checks wherever and whenever necessary. As not just polymorphic objects but all objects are typed, all down-to casts can now be dynamically verified. Compared to existing solutions, our strategy greatly reduces runtime cost and enables type++ usage both during testing and as mitigation. Targeting SPEC CPU2006 and CPU2017, we compile and run 2,040 kLoC, while changing only 314 LoC. To help developers, our static analysis warns where code changes in target programs may be necessary. Running the compiled benchmarks results in negligible performance overhead (1.19% on SPEC CPU2006 and 0.82% on SPEC CPU2017) verifying a total of 90B casts (compared to 3.8B for the state-of-the-art, a 23× improvement). type++ discovers 122 type confusion issues in the SPEC CPU benchmarks among which 62 are new. Targeting Chromium, we change 229 LoC out of 35 MLoC to protect 94.6% of the classes that could be involved in downcasting vulnerabilities, while incurring only 0.98% runtime overhead compared to the baseline.

View More Papers

Fuzzing Space Communication Protocols

Stephan Havermans (IMDEA Software Institute), Lars Baumgaertner, Jussi Roberts, Marcus Wallum (European Space Agency), Juan Caballero (IMDEA Software Institute)

Read More

Silence False Alarms: Identifying Anti-Reentrancy Patterns on Ethereum to...

Qiyang Song (Institute of Information Engineering, Chinese Academy of Sciences; School of Cyber Security, University of Chinese Academy of Sciences), Heqing Huang (Institute of Information Engineering, Chinese Academy of Sciences), Xiaoqi Jia (Institute of Information Engineering, Chinese Academy of Sciences; School of Cyber Security, University of Chinese Academy of Sciences), Yuanbo Xie (Institute of Information…

Read More

HADES Attack: Understanding and Evaluating Manipulation Risks of Email...

Ruixuan Li (Tsinghua University), Chaoyi Lu (Tsinghua University), Baojun Liu (Tsinghua University;Zhongguancun Laboratory), Yunyi Zhang (Tsinghua University), Geng Hong (Fudan University), Haixin Duan (Tsinghua University;Zhongguancun Laboratory), Yanzhong Lin (Coremail Technology Co. Ltd), Qingfeng Pan (Coremail Technology Co. Ltd), Min Yang (Fudan University), Jun Shao (Zhejiang Gongshang University)

Read More

LADDER: Multi-Objective Backdoor Attack via Evolutionary Algorithm

Dazhuang Liu (Delft University of Technology), Yanqi Qiao (Delft University of Technology), Rui Wang (Delft University of Technology), Kaitai Liang (Delft University of Technology), Georgios Smaragdakis (Delft University of Technology)

Read More