Nicolas Badoux (EPFL), Flavio Toffalini (Ruhr-Universität Bochum, EPFL), Yuseok Jeon (UNIST), Mathias Payer (EPFL)

Type confusion, or bad casting, is a common C++ attack vector. Such vulnerabilities cause a program to interpret an object as belonging to a different type, enabling powerful attacks, like control-flow hijacking. C++ limits runtime checks to polymorphic classes because only those have inline type information. The lack of runtime type information throughout an object’s lifetime makes it challenging to enforce continuous checks and thereby prevent type confusion during downcasting. Current solutions either record type information for all objects disjointly, incurring prohibitive runtime overhead, or restrict protection to a fraction of all objects.
Our C++ dialect, type++, enforces the paradigm that each allocated object involved in downcasting carries type information throughout its lifetime, ensuring correctness by enabling type checks wherever and whenever necessary. As not just polymorphic objects but all objects are typed, all down-to casts can now be dynamically verified. Compared to existing solutions, our strategy greatly reduces runtime cost and enables type++ usage both during testing and as mitigation. Targeting SPEC CPU2006 and CPU2017, we compile and run 2,040 kLoC, while changing only 314 LoC. To help developers, our static analysis warns where code changes in target programs may be necessary. Running the compiled benchmarks results in negligible performance overhead (1.19% on SPEC CPU2006 and 0.82% on SPEC CPU2017) verifying a total of 90B casts (compared to 3.8B for the state-of-the-art, a 23× improvement). type++ discovers 122 type confusion issues in the SPEC CPU benchmarks among which 62 are new. Targeting Chromium, we change 229 LoC out of 35 MLoC to protect 94.6% of the classes that could be involved in downcasting vulnerabilities, while incurring only 0.98% runtime overhead compared to the baseline.

View More Papers

The Guardians of Name Street: Studying the Defensive Registration...

Boladji Vinny Adjibi (Georgia Tech), Athanasios Avgetidis (Georgia Tech), Manos Antonakakis (Georgia Tech), Michael Bailey (Georgia Tech), Fabian Monrose (Georgia Tech)

Read More

“I’m 73, you can’t expect me to have multiple...

Ashley Sheil (Munster Technological University), Jacob Camilleri (Munster Technological University), Michelle O Keeffe (Munster Technological University), Melanie Gruben (Munster Technological University), Moya Cronin (Munster Technological University) and Hazel Murray (Munster Technological University)

Read More

Heimdall: Towards Risk-Aware Network Management Outsourcing

Yuejie Wang (Peking University), Qiutong Men (New York University), Yongting Chen (New York University Shanghai), Jiajin Liu (New York University Shanghai), Gengyu Chen (Carnegie Mellon University), Ying Zhang (Meta), Guyue Liu (Peking University), Vyas Sekar (Carnegie Mellon University)

Read More

Try to Poison My Deep Learning Data? Nowhere to...

Yansong Gao (The University of Western Australia), Huaibing Peng (Nanjing University of Science and Technology), Hua Ma (CSIRO's Data61), Zhi Zhang (The University of Western Australia), Shuo Wang (Shanghai Jiao Tong University), Rayne Holland (CSIRO's Data61), Anmin Fu (Nanjing University of Science and Technology), Minhui Xue (CSIRO's Data61), Derek Abbott (The University of Adelaide, Australia)

Read More