Jiawei Li (Beihang University & National University of Singapore), Jiahao Liu (National University of Singapore), Jian Mao (Beihang University), Jun Zeng (National University of Singapore), Zhenkai Liang (National University of Singapore)

Many mobile apps utilize UI widgets to interact with users and trigger specific operational logic, such as clicking a button to send a message. While UI widgets are designed to be intuitive and user-friendly, they can also be misused to perform harmful behaviors that violate user expectations. To address these potential threats, recent studies strive to understand the intentions of UI widgets in mobile apps. However, existing methods either concentrate on the surface-level features of UI widgets, failing to capture their underlying intentions, or involve tedious and faulty information, making it challenging to distill the core intentions. In this paper, we present UI-CTX, which demystifies UI behaviors with a concise and effective representation. For each UI widget, UI-CTX first represents its intentions with a UI Handler Graph (UHG), incorporating the code context behind the widget while eliminating irrelevant information (e.g., unreachable code blocks). Then, UI-CTX performs graph summarization and explores both the structural and semantic information in UHGs to model the core intentions of UI widgets. To systematically evaluate UI-CTX, we extract a series of UI widget behaviors, such as login and search, from a large-scale dataset and conduct extensive experiments. Experimental results show that UI-CTX can effectively represent the intentions of UI widgets and significantly outperforms existing solutions in modeling UI widget behaviors. For example, in the task of classifying UI widget intentions, UHG achieves the highest average F1-score compared to other widget representations (+95.2% and +8.2% compared with permission set and call sequence, respectively) used in state-of-the-art approaches. Additionally, by accurately pinpointing the code contexts of widgets, UI-CTX achieves a $mathbf{3.6times}$ improvement in widget intention clustering performance.

View More Papers

Ctrl+Alt+Deceive: Quantifying User Exposure to Online Scams

Platon Kotzias (Norton Research Group, BforeAI), Michalis Pachilakis (Norton Research Group, Computer Science Department University of Crete), Javier Aldana Iuit (Norton Research Group), Juan Caballero (IMDEA Software Institute), Iskander Sanchez-Rola (Norton Research Group), Leyla Bilge (Norton Research Group)

Read More

OrbID: Identifying Orbcomm Satellite RF Fingerprints

Cédric Solenthaler (ETH Zurich), Joshua Smailes (University of Oxford), Martin Strohmeier (armasuisse Science & Technology)

Read More

PolicyPulse: Precision Semantic Role Extraction for Enhanced Privacy Policy...

Andrick Adhikari (University of Denver), Sanchari Das (University of Denver), Rinku Dewri (University of Denver)

Read More

Horcrux: Synthesize, Split, Shift and Stay Alive; Preventing Channel...

Anqi Tian (Institute of Software, Chinese Academy of Sciences; School of Computer Science and Technology, University of Chinese Academy of Sciences), Peifang Ni (Institute of Software, Chinese Academy of Sciences; Zhongguancun Laboratory, Beijing, P.R.China), Yingzi Gao (Institute of Software, Chinese Academy of Sciences; University of Chinese Academy of Sciences), Jing Xu (Institute of Software, Chinese…

Read More