Xueyuan Han (Harvard University), Thomas Pasquier (University of Bristol), Adam Bates (University of Illinois at Urbana-Champaign), James Mickens (Harvard University), Margo Seltzer (University of British Columbia)

Advanced Persistent Threats (APTs) are difficult to detect due to their “low-and-slow” attack patterns and frequent use of zero-day exploits. We present UNICORN, an anomaly-based APT detector that effectively leverages data provenance analysis. From modeling to detection, UNICORN tailors its design specifically for the unique characteristics of APTs. Through extensive yet time-efficient graph analysis, UNICORN explores provenance graphs that provide rich contextual and historical information to identify stealthy anomalous activities without pre-defined attack signatures. Using a graph sketching technique, it summarizes long-running system execution with space efficiency to combat slow-acting attacks that take place over a long time span. UNICORN further improves its detection capability using a novel modeling approach to understand long-term behavior as the system evolves. Our evaluation shows that UNICORN outperforms an existing state-of-the-art APT detection system and detects real-life APT scenarios with high accuracy.

View More Papers

Et Tu Alexa? When Commodity WiFi Devices Turn into...

Yanzi Zhu (UC Santa Barbara), Zhujun Xiao (University of Chicago), Yuxin Chen (University of Chicago), Zhijing Li (UC Santa Barbara), Max Liu (University of Chicago), Ben Y. Zhao (University of Chicago), Heather Zheng (University of Chicago)

Read More

On Using Application-Layer Middlebox Protocols for Peeking Behind NAT...

Teemu Rytilahti (Ruhr University Bochum), Thorsten Holz (Ruhr University Bochum)

Read More

Hold the Door! Fingerprinting Your Car Key to Prevent...

Kyungho Joo (Korea University), Wonsuk Choi (Korea University), Dong Hoon Lee (Korea University)

Read More

Let's Revoke: Scalable Global Certificate Revocation

Trevor Smith (Brigham Young University), Luke Dickenson (Brigham Young University), Kent Seamons (Brigham Young University)

Read More