Daimeng Wang (University of California Riverside), Ajaya Neupane (University of California Riverside), Zhiyun Qian (University of California Riverside), Nael Abu-Ghazaleh (University of California Riverside), Srikanth V. Krishnamurthy (University of California Riverside), Edward J. M. Colbert (Virginia Tech), Paul Yu (U.S. Army Research Lab (ARL))

Operating systems use shared memory to improve performance. However, as shown in recent studies, attackers can exploit CPU cache side-channels associated with shared memory to extract sensitive information. The attacks that were previously attempted typically only detect the presence of a certain operation and require significant manual analysis to identify and evaluate their effectiveness. Moreover, very few of them target graphics libraries which are commonly used, but difficult to attack. In this paper, we consider the execution time of shared libraries as the side-channel, and showcase a completely automated technique to discover and select exploitable side-channels on shared graphics libraries. In essence, we first collect the cache lines accessed by a victim process during different key presses offline, and then use machine learning to infer the best cache lines (e.g., easily measurable, robust to noise, high information leakage) for a flush and reload attack. We are able to discover effective strategies to classify what keys have been pressed. Using this approach, we not only preclude the need for manual analyses of code and traces — the automated system discovered many previously unknown side-channels of the type we are interested in, but also achieve high precision in terms of inferring the sensitive information entered on desktop and Android platforms. We show that our approach infers the passwords with lowercase letters and numbers 10,000 - 1,000,000 times faster than random guessing. For a large fraction of PINs consisting of 4 to 6 digits, we are able to infer them within 20 and 80 guesses respectively. Finally, we suggest ways to mitigate these attacks.

View More Papers

Adversarial Attacks Against Automatic Speech Recognition Systems via Psychoacoustic...

Lea Schönherr (Ruhr University Bochum), Katharina Kohls (Ruhr University Bochum), Steffen Zeiler (Ruhr University Bochum), Thorsten Holz (Ruhr University Bochum), Dorothea Kolossa (Ruhr University Bochum)

Read More

DIAT: Data Integrity Attestation for Resilient Collaboration of Autonomous...

Tigist Abera (Technische Universität Darmstadt), Raad Bahmani (Technische Universität Darmstadt), Ferdinand Brasser (Technische Universität Darmstadt), Ahmad Ibrahim (Technische Universität Darmstadt), Ahmad-Reza Sadeghi (Technische Universität Darmstadt), Matthias Schunter (Intel Labs)

Read More

Neuro-Symbolic Execution: Augmenting Symbolic Execution with Neural Constraints

Shiqi Shen (National University of Singapore), Shweta Shinde (National University of Singapore), Soundarya Ramesh (National University of Singapore), Abhik Roychoudhury (National University of Singapore), Prateek Saxena (National University of Singapore)

Read More

IoTGuard: Dynamic Enforcement of Security and Safety Policy in...

Z. Berkay Celik (Penn State University), Gang Tan (Penn State University), Patrick McDaniel (Penn State University)

Read More