Sena Sahin (Georgia Institute of Technology), Burak Sahin (Georgia Institute of Technology), Frank Li (Georgia Institute of Technology)

Many online platforms monitor the account login activities of their users to detect unauthorized login attempts. Upon detecting anomalous activity, these platforms send suspicious login notifications to their users. These notifications serve to inform users about the login activity in sufficient detail for them to ascertain its legitimacy and take remedial actions if necessary. Despite the prevalence of these notifications, limited research has explored how users engage with them and how they can be effectively designed.

In this paper, we examine user engagement with email-based suspicious login notifications, focusing on real-world practices. We collect and analyze notifications currently in use to establish
an empirical foundation for common design elements. We focus our study on designs used by online platforms rather than exploring all possible design options. Thus, these design options
are likely supported by real-world online platforms based on the login data they can realistically provide. Then, we investigate how these design elements influence users to read the notification, validate its authenticity, diagnose the login attempt, and determine appropriate remedial steps. By conducting online semi-structured interviews with 20 US-based participants, we investigate their
past experiences and present them with design elements employed by top online platforms to identify what design elements work best. Our findings highlight the practical design options that
enhance users’ understanding and engagement, providing recommendations for deploying effective notifications and identifying future directions for the security community.

View More Papers

An Empirical Study on Fingerprint API Misuse with Lifecycle...

Xin Zhang (Fudan University), Xiaohan Zhang (Fudan University), Zhichen Liu (Fudan University), Bo Zhao (Fudan University), Zhemin Yang (Fudan University), Min Yang (Fudan University)

Read More

Hitchhiking Vaccine: Enhancing Botnet Remediation With Remote Code Deployment...

Runze Zhang (Georgia Institute of Technology), Mingxuan Yao (Georgia Institute of Technology), Haichuan Xu (Georgia Institute of Technology), Omar Alrawi (Georgia Institute of Technology), Jeman Park (Kyung Hee University), Brendan Saltaformaggio (Georgia Institute of Technology)

Read More

Tweezers: A Framework for Security Event Detection via Event...

Jian Cui (Indiana University), Hanna Kim (KAIST), Eugene Jang (S2W Inc.), Dayeon Yim (S2W Inc.), Kicheol Kim (S2W Inc.), Yongjae Lee (S2W Inc.), Jin-Woo Chung (S2W Inc.), Seungwon Shin (KAIST), Xiaojing Liao (Indiana University)

Read More

BARBIE: Robust Backdoor Detection Based on Latent Separability

Hanlei Zhang (Zhejiang University), Yijie Bai (Zhejiang University), Yanjiao Chen (Zhejiang University), Zhongming Ma (Zhejiang University), Wenyuan Xu (Zhejiang University)

Read More