NDSS

Author(s): Stevens Le Blond, Cedric Gilbert, Utkarsh Upadhyay, Manuel Gomez Rodriguez, David Choffnes

Download: Paper (PDF)

Date: 27 Feb 2017

Document Type: Reports

Additional Documents: Slides Video

Associated Event: NDSS 2017

Abstract:

Our understanding of exploit documents as a vector to deliver targeted malware is limited to a handful of studies done in collaboration with the Tibetans, Uyghurs, and political dissidents in the Middle East. In this measurement study, we present a complementary methodology relying only on publicly available data to capture and analyze targeted attacks with both greater scale and depth. In particular, we detect exploit documents uploaded over one year to a large anti-virus aggregator (VirusTotal) and then mine the social engineering information they embed to infer their likely targets and contextual information of the attacks. We identify attacks against two ethnic groups (Tibet and Uyghur) as well as 12 countries spanning America, Asia, and Europe. We then analyze the exploit documents dynamically in sandboxes to correlate and compare the exploited vulnerabilities and malware families targeting different groups. Finally, we use machine learning to infer the role of the uploaders of these documents to VirusTotal (i.e., attacker, targeted victim, or third-party), which enables their classification based only on their metadata, without any dynamic analysis. We make our datasets available to the academic community.