Kazuki Nomoto (Waseda University), Takuya Watanabe (NTT Social Informatics Laboratories), Eitaro Shioji (NTT Social Informatics Laboratories), Mitsuaki Akiyama (NTT Social Informatics Laboratories), Tatsuya Mori (Waseda University/NICT/RIKEN AIP)

Modern Web services provide rich content by accessing resources on user devices, including hardware devices such as cameras, microphones, and GPSs.
Web browser vendors have adopted permission mechanisms that achieve appropriate control over access to such resources to protect user privacy.
The permission mechanism gives users the ability to grant or deny their browser access to resources for each website.
Despite the importance of permission mechanisms in protecting user privacy, previous studies have not been conducted to systematically understand their behavior and implementation.
In this study, we developed Permium, a web browser analysis framework that automatically analyzes the behavior of permission mechanisms implemented by various browsers.
Using the Permium framework, we systematically studied the behavior of permission mechanisms for 22 major browser implementations running on five different operating systems, including mobile and desktop.
We determined that the implementation and behavior of permission mechanisms are fragmented and inconsistent between operating systems, even for the same browser (i.e., Windows Chrome vs. iOS Chrome) and that the implementation inconsistencies can lead to privacy risks.
Based on the behavior and implementation inconsistencies of the permission mechanism revealed by our measurement study, we developed two proof-of-concept attacks and evaluated their feasibility.
The first attack uses the permission information collected by exploiting the inconsistencies to secretly track the user.
The second attack aims to create a situation in which the user cannot correctly determine the origin of the permission request, and the user incorrectly grants permission to a malicious site.
Finally, we clarify the technical issues that must be standardized in privacy mechanisms and provide recommendations to OS/browser vendors to mitigate the threats identified in this study.

View More Papers

He-HTLC: Revisiting Incentives in HTLC

Sarisht Wadhwa (Duke University), Jannis Stoeter (Duke University), Fan Zhang (Duke University, Yale University), Kartik Nayak (Duke University)

Read More

CLExtract: Recovering Highly Corrupted DVB/GSE Satellite Stream with Contrastive...

Minghao Lin (University of Colorado Boulder), Minghao Cheng (Independent Researcher), Dongsheng Luo (Florida International University), Yueqi Chen (University of Colorado Boulder) Presenter: Minghao Lin

Read More

DARWIN: Survival of the Fittest Fuzzing Mutators

Patrick Jauernig (Technical University of Darmstadt), Domagoj Jakobovic (University of Zagreb, Croatia), Stjepan Picek (Radboud University and TU Delft), Emmanuel Stapf (Technical University of Darmstadt), Ahmad-Reza Sadeghi (Technical University of Darmstadt)

Read More

VICEROY: GDPR-/CCPA-compliant Enforcement of Verifiable Accountless Consumer Requests

Scott Jordan (University of California, Irvine), Yoshimichi Nakatsuka (University of California, Irvine), Ercan Ozturk (University of California, Irvine), Andrew Paverd (Microsoft Research), Gene Tsudik (University of California, Irvine)

Read More