Florian Lachner, Minzhe Yuan Chen Cheng, Theodore Olsauskas-Warren (Google)

Online behavioral advertising is a double-edged sword. While relevant display ads are generally considered useful, opaque tracking based on third-party cookies has reached unfettered sprawl and is deemed to be privacy-intrusive. However, existing ways to preserve privacy do not sufficiently balance the needs of both users and the ecosystem. In this work, we evaluate alternative browser controls. We leverage the idea of inferring interests on users’ devices and designed novel browser controls to manage these interests. Through a mixed method approach, we studied how users feel about this approach. First, we conducted pilot interviews with 9 participants to test two design directions. Second, we ran a survey with 2,552 respondents to measure how our final design compares with current cookie settings. Respondents reported a significantly higher level of perceived privacy and feeling of control when introduced to the concept of locally inferred interests with an option for removal.

View More Papers

Victim-Centred Abuse Investigations and Defenses for Social Media Platforms

Zaid Hakami (Florida International University and Jazan University), Ashfaq Ali Shafin (Florida International University), Peter J. Clarke (Florida International University), Niki Pissinou (Florida International University), and Bogdan Carbunar (Florida International University)

Read More

Machine Unlearning of Features and Labels

Alexander Warnecke (TU Braunschweig), Lukas Pirch (TU Braunschweig), Christian Wressnegger (Karlsruhe Institute of Technology (KIT)), Konrad Rieck (TU Braunschweig)

Read More

Cryptographic Oracle-based Conditional Payments

Varun Madathil (North Carolina State University), Sri Aravinda Krishnan Thyagarajan (NTT Research), Dimitrios Vasilopoulos (IMDEA Software Institute), Lloyd Fournier (None), Giulio Malavolta (Max Planck Institute for Security and Privacy), Pedro Moreno-Sanchez (IMDEA Software Institute)

Read More