Natasha Alkhatib (Télécom Paris), Lina Achaji (INRIA), Maria Mushtaq (Télécom Paris), Hadi Ghauch (Télécom Paris), Jean-Luc Danger (Télécom Paris)

The adoption of external connectivity on modern vehicles and the increasing integration of complex automotive software paved the way for novel attack scenarios exploiting the vulnerabilities of in-vehicle protocols. The Controller Area Network (CAN) bus, a widely used communication network in vehicles between electronic control units (ECUs), therefore requires urgent monitoring. Predicting sophisticated intrusions that affect interdependencies between several CAN signals transmitted by distinct IDs requires modeling two key dimensions: 1) time dimension, where we model the temporal relationships between signals carried by each ID separately 2) interaction dimension where we model the interaction between IDs, i.e., how the state of each CAN ID affects the others. In this work, we propose a novel deep learning-based multi-agent intrusion detection system, AMICA, that uses an attention-based self-supervised learning technique to detect stealthy in-vehicle intrusions, i.e., those that that not only disturb normal timing or ID distributions but also carried data values by multiple IDs, along with others. The proposed model is evaluated on the benchmark dataset SynCAN. Our source code is available at: https://github.com/linaashaji/AMICA

View More Papers

WIP: Towards Practical LiDAR Spoofing Attack against Vehicles Driving...

Ryo Suzuki (Keio University), Takami Sato (University of California, Irvine), Yuki Hayakawa, Kazuma Ikeda, Ozora Sako, Rokuto Nagata (Keio University), Qi Alfred Chen (University of California, Irvine), Kentaro Yoshioka (Keio University)

Read More

Paralyzing Drones via EMI Signal Injection on Sensory Communication...

Joonha Jang (KAIST), ManGi Cho (KAIST), Jaehoon Kim (KAIST), Dongkwan Kim (Samsung SDS), Yongdae Kim (KAIST)

Read More

Un-Rocking Drones: Foundations of Acoustic Injection Attacks and Recovery...

Jinseob Jeong (KAIST, Agency for Defense Development), Dongkwan Kim (Samsung SDS), Joonha Jang (KAIST), Juhwan Noh (KAIST), Changhun Song (KAIST), Yongdae Kim (KAIST)

Read More

Parakeet: Practical Key Transparency for End-to-End Encrypted Messaging

Harjasleen Malvai (UIUC/IC3), Lefteris Kokoris-Kogias (IST Austria), Alberto Sonnino (Mysten Labs), Esha Ghosh (Microsoft Research), Ercan Oztürk (Meta), Kevin Lewi (Meta), Sean Lawlor (Meta)

Read More