Evan Allen (Virginia Tech), Zeb Bowden (Virginia Tech Transportation Institute), Randy Marchany (Virginia Tech), J. Scot Ransbottom (Virginia Tech)

Modern vehicles are increasingly connected systems that expose a wide variety of security risks to their users. Message authentication prevents entire classes of these attacks, such as message spoofing and electronic control unit impersonation, but current in-vehicle networks do not include message authentication features. Latency and throughput requirements for vehicle traffic can be very stringent (100 Mbps in cases), making it difficult to implement message authentication with cryptography due to the overheads required. This work investigates the feasibility of implementing cryptography-based message authentication in Automotive Ethernet networks that is fast enough to comply with these performance requirements. We find that it is infeasible to include Message Authentication Codes in all traffic without costly hardware accelerators and propose an alternate approach for future research to minimize the cost of authenticated traffic.

View More Papers

CLExtract: Recovering Highly Corrupted DVB/GSE Satellite Stream with Contrastive...

Minghao Lin (University of Colorado Boulder), Minghao Cheng (Independent Researcher), Dongsheng Luo (Florida International University), Yueqi Chen (University of Colorado Boulder) Presenter: Minghao Lin

Read More

The Vulnerabilities Less Exploited: Cyberattacks on End-of-Life Satellites

Frank Lee and Gregory Falco (Johns Hopkins University) Presenter: Frank Lee

Read More

Securing EV charging system against Physical-layer Signal Injection Attack...

Soyeon Son (Korea University) Kyungho Joo (Korea University) Wonsuk Choi (Korea University) Dong Hoon Lee (Korea University)

Read More