Keisuke Nishimura, Yuichi Sugiyama, Yuki Koike, Masaya Motoda, Tomoya Kitagawa, Toshiki Takatera, Yuma Kurogome (Ricerca Security, Inc.)

Fuzzing has contributed to automatically identifying bugs and vulnerabilities in the software testing field. Although it can efficiently generate crashing inputs, these inputs are usually analyzed manually. Several root cause analysis (RCA) techniques have been proposed to automatically analyze the root causes of crashes to mitigate this cost. However, outstanding challenges for realizing more elaborate RCA techniques remain unknown owing to the lack of extensive evaluation methods over existing techniques. With this problem in mind, we developed an end-to-end benchmarking platform, RCABench, that can evaluate RCA techniques for various targeted programs in a detailed and comprehensive manner. Our experiments with RCABench indicated that the evaluations in previous studies were not enough to fully support their claims. Moreover, this platform can be leveraged to evaluate emerging RCA techniques by comparing them with existing techniques.

View More Papers

Learning Automated Defense Strategies Using Graph-Based Cyber Attack Simulations

Jakob Nyber, Pontus Johnson (KTH Royal Institute of Technology)

Read More

It Doesn’t Have to Be So Hard: Efficient Symbolic...

Vaibhav Sharma (University of Minnesota), Navid Emamdoost (University of Minnesota), Seonmo Kim (University of Minnesota), Stephen McCamant (University of Minnesota)

Read More

Real Threshold ECDSA

Harry W. H. Wong (The Chinese University of Hong Kong), Jack P. K. Ma (The Chinese University of Hong Kong), Hoover H. F. Yin (The Chinese University of Hong Kong), Sherman S. M. Chow (The Chinese University of Hong Kong)

Read More