Muslum Ozgur Ozmen, Habiba Farrukh, Hyungsub Kim, Antonio Bianchi, Z. Berkay Celik (Purdue University)

Drone swarms are becoming increasingly prevalent in important missions, including military operations, rescue tasks, environmental monitoring, and disaster recovery. Member drones coordinate with each other to efficiently and effectively accomplish a given mission. To automatically coordinate a swarm, member drones exchange critical messages (e.g., their positions, locations of identified obstacles, and detected search targets) about their observed environment and missions over wireless communication channels. Therefore, swarms need a pairing system to establish secure communication channels that protect the confidentiality and integrity of the messages. However, swarm properties and the open physical environment in which they operate bring unique challenges in establishing cryptographic keys between drones.

In this paper, we first outline an adversarial model and the ideal design requirements for secure pairing in drone swarms. We then survey existing human-in-the-loop-based, context-based, and public key cryptography (PKC) based pairing methods to explore their feasibility in drone swarms. Our exploration, unfortunately, shows that existing techniques fail to fully meet the unique requirements of drone swarms. Thus, we propose research directions that can meet these requirements for secure, energy-efficient, and scalable swarm pairing systems.

View More Papers

On the Anonymity of Peer-To-Peer Network Anonymity Schemes Used...

Piyush Kumar Sharma (imec-COSIC, KU Leuven), Devashish Gosain (Max Planck Institute for Informatics), Claudia Diaz (Nym Technologies, SA and imec-COSIC, KU Leuven)

Read More

Navigating Murky Waters: Automated Browser Feature Testing for Uncovering...

Mir Masood Ali (University of Illinois Chicago), Binoy Chitale (Stony Brook University), Mohammad Ghasemisharif (University of Illinois Chicago), Chris Kanich (University of Illinois Chicago), Nick Nikiforakis (Stony Brook University), Jason Polakis (University of Illinois Chicago)

Read More

Extrapolating Formal Analysis to Uncover Attacks in Bluetooth Passkey...

Mohit Kumar Jangid (The Ohio State University), Yue Zhang (Computer Science & Engineering, Ohio State University), Zhiqiang Lin (The Ohio State University)

Read More

Human Drivers' Situation Awareness of Autonomous Driving Under Physical-world...

Katherine S. Zhang (Purdue University), Claire Chen (Pennsylvania State University), Aiping Xiong (Pennsylvania State University)

Read More