Muslum Ozgur Ozmen, Habiba Farrukh, Hyungsub Kim, Antonio Bianchi, Z. Berkay Celik (Purdue University)

Drone swarms are becoming increasingly prevalent in important missions, including military operations, rescue tasks, environmental monitoring, and disaster recovery. Member drones coordinate with each other to efficiently and effectively accomplish a given mission. To automatically coordinate a swarm, member drones exchange critical messages (e.g., their positions, locations of identified obstacles, and detected search targets) about their observed environment and missions over wireless communication channels. Therefore, swarms need a pairing system to establish secure communication channels that protect the confidentiality and integrity of the messages. However, swarm properties and the open physical environment in which they operate bring unique challenges in establishing cryptographic keys between drones.

In this paper, we first outline an adversarial model and the ideal design requirements for secure pairing in drone swarms. We then survey existing human-in-the-loop-based, context-based, and public key cryptography (PKC) based pairing methods to explore their feasibility in drone swarms. Our exploration, unfortunately, shows that existing techniques fail to fully meet the unique requirements of drone swarms. Thus, we propose research directions that can meet these requirements for secure, energy-efficient, and scalable swarm pairing systems.

View More Papers

SoundLock: A Novel User Authentication Scheme for VR Devices...

Huadi Zhu (The University of Texas at Arlington), Mingyan Xiao (The University of Texas at Arlington), Demoria Sherman (The University of Texas at Arlington), Ming Li (The University of Texas at Arlington)

Read More

Securing Automotive Software Supply Chains (Long)

Marina Moore, Aditya Sirish A Yelgundhalli (New York University), Justin Cappos (NYU)

Read More

Analysing Adversarial Threats to Rule-Based Local-Planning Algorithms for Autonomous...

Andrew Roberts (Tallinn University of Technology), Mohsen Malayjerdi (Tallinn University of Technology), Mauro Bellone (Tallinn University of Technology), Olaf Maennel (The University of Adelaide), Ehsan Malayjerdi (Tallinn University of Technology)

Read More

On the Vulnerability of Traffic Light Recognition Systems to...

Sri Hrushikesh Varma Bhupathiraju (University of Florida), Takami Sato (University of California, Irvine), Michael Clifford (Toyota Info Labs), Takeshi Sugawara (The University of Electro-Communications), Qi Alfred Chen (University of California, Irvine), Sara Rampazzi (University of Florida)

Read More