Ryan Wails (Georgetown University, U.S. Naval Research Laboratory), George Arnold Sullivan (University of California, San Diego), Micah Sherr (Georgetown University), Rob Jansen (U.S. Naval Research Laboratory)

The understanding of realistic censorship threats enables the development of more resilient censorship circumvention systems, which are vitally important for advancing human rights and fundamental freedoms. We argue that current state-of-the-art methods for detecting circumventing flows in Tor are unrealistic: they are overwhelmed with false positives (> 94%), even when considering conservatively high base rates (10-3). In this paper, we present a new methodology for detecting censorship circumvention in which a deep-learning flow-based classifier is combined with a host-based detection strategy that incorporates information from multiple flows over time. Using over 60,000,000 real-world network flows to over 600,000 destinations, we demonstrate how our detection methods become more precise as they temporally accumulate information, allowing us to detect circumvention servers with perfect recall and no false positives. Our evaluation considers a range of circumventing flow base rates spanning six orders of magnitude and real-world protocol distributions. Our findings suggest that future circumvention system designs need to more carefully consider host-based detection strategies, and we offer suggestions for designs that are more resistant to these attacks.

View More Papers

5G-Spector: An O-RAN Compliant Layer-3 Cellular Attack Detection Service

Haohuang Wen (The Ohio State University), Phillip Porras (SRI International), Vinod Yegneswaran (SRI International), Ashish Gehani (SRI International), Zhiqiang Lin (The Ohio State University)

Read More

AnonPSI: An Anonymity Assessment Framework for PSI

Bo Jiang (TikTok Inc.), Jian Du (TikTok Inc.), Qiang Yan (TikTok Inc.)

Read More

Designing and Evaluating a Testbed for the Matter Protocol:...

Ravindra Mangar (Dartmouth College) Jingyu Qian (University of Illinois), Wondimu Zegeye (Morgan State University), Abdulrahman AlRabah, Ben Civjan, Shalni Sundram, Sam Yuan, Carl A. Gunter (University of Illinois), Mounib Khanafer (American University of Kuwait), Kevin Kornegay (Morgan State University), Timothy J. Pierson, David Kotz (Dartmouth College)

Read More

Random Spoofing Attack against Scan Matching Algorithm SLAM (Long)

Masashi Fukunaga (MitsubishiElectric), Takeshi Sugawara (The University of Electro-Communications)

Read More