Bang Wu (CSIRO's Data61/Monash University), He Zhang (Monash University), Xiangwen Yang (Monash University), Shuo Wang (CSIRO's Data61/Shanghai Jiao Tong University), Minhui Xue (CSIRO's Data61), Shirui Pan (Griffith University), Xingliang Yuan (Monash University)

The emergence of Graph Neural Networks (GNNs) in graph data analysis and their deployment on Machine Learning as a Service platforms have raised critical concerns about data misuse during model training. This situation is further exacerbated due to the lack of transparency in local training processes, potentially leading to the unauthorized accumulation of large volumes of graph data, thereby infringing on the intellectual property rights of data owners. Existing methodologies often address either data misuse detection or mitigation, and are primarily designed for local GNN models rather than cloud-based MLaaS platforms. These limitations call for an effective and comprehensive solution that detects and mitigates data misuse without requiring exact training data while respecting the proprietary nature of such data. This paper introduces a pioneering approach called GraphGuard, to tackle these challenges. We propose a training-data-free method that not only detects graph data misuse but also mitigates its impact via targeted unlearning, all without relying on the original training data. Our innovative misuse detection technique employs membership inference with radioactive data, enhancing the distinguishability between member and non-member data distributions. For mitigation, we utilize synthetic graphs that emulate the characteristics previously learned by the target model, enabling effective unlearning even in the absence of exact graph data. We conduct comprehensive experiments utilizing four real-world graph datasets to demonstrate the efficacy of GraphGuard in both detection and unlearning. We show that GraphGuard attains a near-perfect detection rate of approximately 100% across these datasets with various GNN models. In addition, it performs unlearning by eliminating the impact of the unlearned graph with a marginal decrease in accuracy (less than 5%).

View More Papers

Front-running Attack in Sharded Blockchains and Fair Cross-shard Consensus

Jianting Zhang (Purdue University), Wuhui Chen (Sun Yat-sen University), Sifu Luo (Sun Yat-sen University), Tiantian Gong (Purdue University), Zicong Hong (The Hong Kong Polytechnic University), Aniket Kate (Purdue University)

Read More

Beyond the Bytes: Understanding the Limitations of Intrinsic Binary...

Peter Lafosse (Owner and Co-Founder of Vector 35 Inc.)

Read More

WIP: A Trust Assessment Method for In-Vehicular Networks using...

Artur Hermann, Natasa Trkulja (Ulm University - Institute of Distributed Systems), Anderson Ramon Ferraz de Lucena, Alexander Kiening (DENSO AUTOMOTIVE Deutschland GmbH), Ana Petrovska (Huawei Technologies), Frank Kargl (Ulm University - Institute of Distributed Systems)

Read More

Understanding the Implementation and Security Implications of Protective DNS...

Mingxuan Liu (Zhongguancun Laboratory; Tsinghua University), Yiming Zhang (Tsinghua University), Xiang Li (Tsinghua University), Chaoyi Lu (Tsinghua University), Baojun Liu (Tsinghua University), Haixin Duan (Tsinghua University; Zhongguancun Laboratory), Xiaofeng Zheng (Institute for Network Sciences and Cyberspace, Tsinghua University; QiAnXin Technology Research Institute & Legendsec Information Technology (Beijing) Inc.)

Read More