Shichen Wu (1. School of Cyber Science and Technology, Shandong University 2. Key Laboratory of Cryptologic Technology and Information Security, Ministry of Education), Puwen Wei (1. School of Cyber Science and Technology, Shandong University 2. Quancheng Laboratory 3. Key Laboratory of Cryptologic Technology and Information Security, Ministry of Education), Ren Zhang (Cryptape Co. Ltd. and…

Proof-of-work (PoW) blockchain protocols based on directed acyclic graphs (DAGs) have demonstrated superior transaction confirmation performance compared to their chain-based predecessors. However, it is uncertain whether their security deteriorates in high-throughput settings similar to their predecessors, because their acceptance of simultaneous blocks and complex block dependencies presents challenges for rigorous security analysis.

We address these challenges by analyzing DAG-based protocols via a congestible blockchain model (CBM), a general model that allows case-by-case upper bounds on the block propagation delay, rather than a uniform upper bound as in most previous analyses. CBM allows us to capture two key phenomena of high-throughput settings: (1) simultaneous blocks increase each other's propagation delay, and (2) a block can be processed only after receiving all the blocks it refers to. We further devise a reasonable adversarial block propagation strategy in CBM, called the late-predecessor attack, which exploits block dependencies to delay the processing of honest blocks. We then evaluate the security and performance of Prism and OHIE, two DAG-based protocols that aim to break the security-performance tradeoff, in the presence of an attacker capable of launching the late predecessor attack. Our results show that these protocols suffer from reduced security and extended latency in high-throughput settings similar to their chain-based predecessors.

View More Papers

Facilitating Threat Modeling by Leveraging Large Language Models

Isra Elsharef, Zhen Zeng (University of Wisconsin-Milwaukee), Zhongshu Gu (IBM Research)

Read More

Abusing the Ethereum Smart Contract Verification Services for Fun...

Pengxiang Ma (Huazhong University of Science and Technology), Ningyu He (Peking University), Yuhua Huang (Huazhong University of Science and Technology), Haoyu Wang (Huazhong University of Science and Technology), Xiapu Luo (The Hong Kong Polytechnic University)

Read More

GhostType: The Limits of Using Contactless Electromagnetic Interference to...

Qinhong Jiang (Zhejiang University), Yanze Ren (Zhejiang University), Yan Long (University of Michigan), Chen Yan (Zhejiang University), Yumai Sun (University of Michigan), Xiaoyu Ji (Zhejiang University), Kevin Fu (Northeastern University), Wenyuan Xu (Zhejiang University)

Read More

Efficient Normalized Reduction and Generation of Equivalent Multivariate Binary...

Arnau Gàmez-Montolio (City, University of London; Activision Research), Enric Florit (Universitat de Barcelona), Martin Brain (City, University of London), Jacob M. Howe (City, University of London)

Read More