Qinhong Jiang (Zhejiang University), Yanze Ren (Zhejiang University), Yan Long (University of Michigan), Chen Yan (Zhejiang University), Yumai Sun (University of Michigan), Xiaoyu Ji (Zhejiang University), Kevin Fu (Northeastern University), Wenyuan Xu (Zhejiang University)

Keyboards are the primary peripheral input devices for various critical computer application scenarios. This paper performs a security analysis of the keyboard sensing mechanisms and uncovers a new class of vulnerabilities that can be exploited to induce phantom keys---fake keystrokes injected into keyboards' analog circuits in a contactless way using electromagnetic interference (EMI). Besides normal keystrokes, such phantom keys also include keystrokes that cannot be achieved by human operators, such as rapidly injecting over 10,000 keys per minute and injecting hidden keys that do not exist on the physical keyboard. The underlying principles of phantom key injection consist in inducing false voltages on keyboard sensing GPIO pins through EMI coupled onto matrix circuits. We investigate the voltage and timing requirements of injection signals both theoretically and empirically to establish the theory of phantom key injection. To validate the threat of keyboard sensing vulnerabilities, we design GhostType that can cause denial-of-service of the keyboard and inject random keystrokes as well as certain targeted keystrokes of the adversary's choice. We have validated GhostType on 48 of 50 off-the-shelf keyboards/keypads from 20 brands including both membrane/mechanical structures and USB/Bluetooth protocols. Some example consequences of GhostType include completely blocking keyboard operations, crashing and turning off downstream computers, and deleting files on computers. Finally, we glean lessons from our investigations and propose countermeasures including EMI shielding, phantom key detection, and keystroke scanning signal improvement.

View More Papers

SENSE: Enhancing Microarchitectural Awareness for TEEs via Subscription-Based Notification

Fan Sang (Georgia Institute of Technology), Jaehyuk Lee (Georgia Institute of Technology), Xiaokuan Zhang (George Mason University), Meng Xu (University of Waterloo), Scott Constable (Intel), Yuan Xiao (Intel), Michael Steiner (Intel), Mona Vij (Intel), Taesoo Kim (Georgia Institute of Technology)

Read More

VETEOS: Statically Vetting EOSIO Contracts for the “Groundhog Day”...

Levi Taiji Li (University of Utah), Ningyu He (Peking University), Haoyu Wang (Huazhong University of Science and Technology), Mu Zhang (University of Utah)

Read More

TrustSketch: Trustworthy Sketch-based Telemetry on Cloud Hosts

Zhuo Cheng (Carnegie Mellon University), Maria Apostolaki (Princeton University), Zaoxing Liu (University of Maryland), Vyas Sekar (Carnegie Mellon University)

Read More

WIP: An Adaptive High Frequency Removal Attack to Bypass...

Yuki Hayakawa (Keio University), Takami Sato (University of California, Irvine), Ryo Suzuki, Kazuma Ikeda, Ozora Sako, Rokuto Nagata (Keio University), Qi Alfred Chen (University of California, Irvine), Kentaro Yoshioka (Keio University)

Read More