Yue Xiao (Wuhan University), Yi He (Tsinghua University), Xiaoli Zhang (Zhejiang University of Technology), Qian Wang (Wuhan University), Renjie Xie (Tsinghua University), Kun Sun (George Mason University), Ke Xu (Tsinghua University), Qi Li (Tsinghua University)

The proliferation of consumer IoT products in our daily lives has raised the need for secure device authentication and access control.
Unfortunately, these resource-constrained devices typically use token-based authentication, which is vulnerable to token compromise attacks that allow attackers to impersonate the devices and perform malicious operations by stealing the access token.
Using hardware fingerprints to secure their authentication is a promising way to mitigate these threats.
However, once attackers have stolen some hardware fingerprints (e.g., via MitM attacks), they can bypass the hardware authentication by training a machine learning model to mimic fingerprints or reusing these fingerprints to craft forge requests.

In this paper, we present MCU-Token, a secure hardware fingerprinting framework for MCU-based IoT devices even if the cryptographic mechanisms (e.g., private keys) are compromised. MCU-Token can be easily integrated with various IoT devices by simply adding a short hardware fingerprint-based token to the existing payload. To prevent the reuse of this token, we propose a message mapping approach that binds the token to a specific request via generating the hardware fingerprints based on the request payload. To defeat the machine learning attacks, we mix the valid fingerprints with poisoning data so that attackers cannot train a usable model with the leaked tokens. MCU-Token can defend against armored adversary who may replay, craft, and offload the requests via MitM or use both hardware (e.g., use identical devices) and software (e.g., machine learning attacks) strategies to mimic the fingerprints. The system evaluation shows that MCU-Token can achieve high accuracy (over 97%) with a low overhead across various IoT devices and application scenarios.

View More Papers

Towards Precise Reporting of Cryptographic Misuses

Yikang Chen (The Chinese University of Hong Kong), Yibo Liu (Arizona State University), Ka Lok Wu (The Chinese University of Hong Kong), Duc V Le (Visa Research), Sze Yiu Chau (The Chinese University of Hong Kong)

Read More

Acoustic Keystroke Leakage on Smart Televisions

Tejas Kannan (University of Chicago), Synthia Qia Wang (University of Chicago), Max Sunog (University of Chicago), Abraham Bueno de Mesquita (University of Chicago Laboratory Schools), Nick Feamster (University of Chicago), Henry Hoffmann (University of Chicago)

Read More

Heterogeneous Graph Pre-training Based Model for Secure and Efficient...

Xurui Li (Fudan University), Xin Shan (Bank of Shanghai), Wenhao Yin (Shanghai Saic Finance Co., Ltd)

Read More