Jian Cui (Indiana University Bloomington)

Twitter has been recognized as a highly valuable source for security practitioners, offering timely updates on breaking events and threat analyses. Current methods for automating event detection on Twitter rely on standard text embedding techniques to cluster tweets. However, these methods are not effective as standard text embeddings are not specifically designed for clustering security-related tweets. To tackle this, our paper introduces a novel method for creating custom embeddings that improve the accuracy and comprehensiveness of security event detection on Twitter. This method integrates patterns of security-related entity sharing between tweets into the embedding process, resulting in higher-quality embeddings that significantly enhance precision and coverage in identifying security events.

View More Papers

Evaluating Disassembly Ground Truth Through Dynamic Tracing (abstract)

Lambang Akbar (National University of Singapore), Yuancheng Jiang (National University of Singapore), Roland H.C. Yap (National University of Singapore), Zhenkai Liang (National University of Singapore), Zhuohao Liu (National University of Singapore)

Read More

WIP: Body Posture Analysis as an Objective Measurement for...

Cherin Lim, Tianhao Xu, Prashanth Rajivan (University of Washington)

Read More

TextGuard: Provable Defense against Backdoor Attacks on Text Classification

Hengzhi Pei (UIUC), Jinyuan Jia (UIUC, Penn State), Wenbo Guo (UC Berkeley, Purdue University), Bo Li (UIUC), Dawn Song (UC Berkeley)

Read More

WIP: A First Look At Employing Large Multimodal Models...

Mohammed Aldeen, Pedram MohajerAnsari, Jin Ma, Mashrur Chowdhury, Long Cheng, Mert D. Pesé (Clemson University)

Read More