Tongxin Wei (Nankai University), Ding Wang (Nankai University), Yutong Li (Nankai University), Yuehuan Wang (Nankai University)

Risk-based authentication (RBA) is gaining popularity and RBA notifications promptly alert users to protect their accounts from unauthorized access. Recent research indicates that users can identify legitimate login notifications triggered by themselves. However, little attention has been paid to whether RBA notifications triggered by non-account holders can effectively raise users' awareness of crises and prevent potential attacks. In this paper, we invite 258 online participants and 15 offline participants to explore users' perceptions, reactions, and expectations for three types of RBA notifications (i.e., RBA notifications triggered by correct passwords, incorrect passwords, and password resets).

The results show that over 90% of participants consider RBA notifications important. Users do not show significant differences in their feelings and behaviors towards the three types of RBA notifications, but they have distinct expectations for each type. Most participants feel suspicious, nervous, and anxious upon receiving the three types of RBA notifications not triggered by themselves. Consequently, users immediately review the full content of the notification. 46% of users suspect that RBA notifications might be phishing attempts, while categorizing them as potential phishing attacks or spam may lead to ineffective account protection. Despite these suspicions, 65% of users still log into their accounts to check for suspicious activities and take no further action if no abnormalities are found. Additionally, the current format of RBA notifications fails to gain users' trust and meet their expectations. Our findings indicate that RBA notifications need to provide more detailed information about suspicious access, offer additional security measures, and clearly explain the risks involved. Finally, we offer five design recommendations for RBA notifications to better mitigate potential risks and enhance account security.

View More Papers

TZ-DATASHIELD: Automated Data Protection for Embedded Systems via Data-Flow-Based...

Zelun Kong (University of Texas at Dallas), Minkyung Park (University of Texas at Dallas), Le Guan (University of Georgia), Ning Zhang (Washington University in St. Louis), Chung Hwan Kim (University of Texas at Dallas)

Read More

Towards LLM-Assisted Vulnerability Detection and Repair for Open-Source 5G...

Rupam Patir (University at Buffalo), Qiqing Huang (University at Buffalo), Keyan Guo (University at Buffalo), Wanda Guo (Texas A&M University), Guofei Gu (Texas A&M University), Haipeng Cai (University at Buffalo), Hongxin Hu (University at Buffalo)

Read More

DUMPLING: Fine-grained Differential JavaScript Engine Fuzzing

Liam Wachter (EPFL), Julian Gremminger (EPFL), Christian Wressnegger (Karlsruhe Institute of Technology (KIT)), Mathias Payer (EPFL), Flavio Toffalini (EPFL)

Read More

Panel on “Security and Privacy Issues in New 5G...

Moderator: Arupjyoti (Arup) Bhuyan, Ph.D. Director, Wireless Security Institute, Idaho National Laboratory Panelists: Ted K. Woodward, Ph.D. Technical Director for FutureG, OUSD (R&E) Phillip Porras, Program Director, Internet Security Research, SRI Donald McBride, Senior Security Researcher, Bell Laboratories, Nokia

Read More