Zelun Kong (University of Texas at Dallas), Minkyung Park (University of Texas at Dallas), Le Guan (University of Georgia), Ning Zhang (Washington University in St. Louis), Chung Hwan Kim (University of Texas at Dallas)

As reliance on embedded systems grows in critical domains such as healthcare, industrial automation, and unmanned vehicles, securing the data on micro-controller units (MCUs) becomes increasingly crucial. These systems face significant challenges related to computational power and energy constraints, complicating efforts to maintain the confidentiality and integrity of sensitive data. Previous methods have utilized compartmentalization techniques to protect this sensitive data, yet they remain vulnerable to breaches by strong adversaries exploiting privileged software.

In this paper, we introduce TZ-DATASHIELD, a novel LLVM compiler tool that enhances ARM TrustZone with sensitive data flow (SDF) compartmentalization, offering robust protection against strong adversaries in MCU-based systems. We address three primary challenges: the limitations of existing compartment units, inadequate isolation within the Trusted Execution Environment (TEE), and the exposure of shared data to potential attacks. TZ-DATASHIELD addresses these challenges by implementing a fine-grained compartmentalization approach that focuses on sensitive data flow, ensuring data confidentiality and integrity, and developing a novel intra-TEE isolation mechanism that validates compartment access to TEE resources at runtime. Our prototype enables firmware developers to annotate source code to generate TrustZone-ready firmware images automatically. Our evaluation using real-world MCU applications demonstrates that TZ-DATASHIELD achieves up to 80.8% compartment memory and 88.6% ROP gadget reductions within the TEE address space. It incurs an average runtime overhead of 14.7% with CFI and DFI enforcement, and 7.6% without these measures.

View More Papers

TWINFUZZ: Differential Testing of Video Hardware Acceleration Stacks

Matteo Leonelli (CISPA Helmholtz Center for Information Security), Addison Crump (CISPA Helmholtz Center for Information Security), Meng Wang (CISPA Helmholtz Center for Information Security), Florian Bauckholt (CISPA Helmholtz Center for Information Security), Keno Hassler (CISPA Helmholtz Center for Information Security), Ali Abbasi (CISPA Helmholtz Center for Information Security), Thorsten Holz (CISPA Helmholtz Center for Information…

Read More

SecuWear: Secure Data Sharing Between Wearable Devices

Sujin Han (KAIST) Diana A. Vasile (Nokia Bell Labs), Fahim Kawsar (Nokia Bell Labs, University of Glasgow), Chulhong Min (Nokia Bell Labs)

Read More

Manifoldchain: Maximizing Blockchain Throughput via Bandwidth-Clustered Sharding

Chunjiang Che (The Hong Kong University of Science and Technology (Guangzhou)), Songze Li (Southeast University), Xuechao Wang (The Hong Kong University of Science and Technology (Guangzhou))

Read More

The (Un)usual Suspects – Studying Reasons for Lacking Updates...

Maria Hellenthal (CISPA Helmholtz Center for Information Security), Lena Gotsche (CISPA Helmholtz Center for Information Security), Rafael Mrowczynski (CISPA Helmholtz Center for Information Security), Sarah Kugel (Saarland University), Michael Schilling (CISPA Helmholtz Center for Information Security), Ben Stock (CISPA Helmholtz Center for Information Security)

Read More