Zhanpeng Liu (Peking University), Yi Rong (Tsinghua University), Chenyang Li (Peking University), Wende Tan (Tsinghua University), Yuan Li (Zhongguancun Laboratory), Xinhui Han (Peking University), Songtao Yang (Zhongguancun Laboratory), Chao Zhang (Tsinghua University)

Memory safety violations are a significant concern in real-world programs, prompting the development of various mitigation methods. However, existing cost-efficient defenses provide limited protection and can be bypassed by sophisticated attacks, necessitating the combination of multiple defenses. Unfortunately, combining these defenses often results in performance degradation and compatibility issues.

We present CCTAG, a lightweight architecture that simplifies the integration of diverse tag-based defense mechanisms. It offers configurable tag verification and modification rules to build various security policies, acting as basic protection primitives for defense applications. Its policy-centric mask design boosts flexibility and prevents conflicts, enabling multiple defense mechanisms to run concurrently. Our RISC-V prototype on an FPGA board demonstrates that CCTAG incurs minimal hardware overhead, with a slight increase in LUTs (6.77%) and FFs (8.02%). With combined protections including ret address protection, code pointer and vtable pointer integrity, and memory coloring, the SPEC CPU CINT2006 and CINT2017 benchmarks report low runtime overheads of 4.71% and 7.93%, respectively. Security assessments with CVEs covering major memory safety vulnerabilities and various exploitation techniques verify CCTAG’s effectiveness in mitigating real-world threats.

View More Papers

AI-Assisted RF Fingerprinting for Identification of User Devices in...

Aishwarya Jawne (Center for Connected Autonomy & AI, Florida Atlantic University), Georgios Sklivanitis (Center for Connected Autonomy & AI, Florida Atlantic University), Dimitris A. Pados (Center for Connected Autonomy & AI, Florida Atlantic University), Elizabeth Serena Bentley (Air Force Research Laboratory)

Read More

LLM-xApp: A Large Language Model Empowered Radio Resource Management...

Xingqi Wu (University of Michigan-Dearborn), Junaid Farooq (University of Michigan-Dearborn), Yuhui Wang (University of Michigan-Dearborn), Juntao Chen (Fordham University)

Read More

BinEnhance: An Enhancement Framework Based on External Environment Semantics...

Yongpan Wang (Institute of Information Engineering Chinese Academy of Sciences & University of Chinese Academy of Sciences, China), Hong Li (Institute of Information Engineering Chinese Academy of Sciences & University of Chinese Academy of Sciences, China), Xiaojie Zhu (King Abdullah University of Science and Technology, Thuwal, Saudi Arabia), Siyuan Li (Institute of Information Engineering Chinese…

Read More

YuraScanner: Leveraging LLMs for Task-driven Web App Scanning

Aleksei Stafeev (CISPA Helmholtz Center for Information Security), Tim Recktenwald (CISPA Helmholtz Center for Information Security), Gianluca De Stefano (CISPA Helmholtz Center for Information Security), Soheil Khodayari (CISPA Helmholtz Center for Information Security), Giancarlo Pellegrino (CISPA Helmholtz Center for Information Security)

Read More