Xin Jin (The Ohio State University), Shiqing Ma (University of Massachusetts Amherst), Zhiqiang Lin (The Ohio State University)

While neural networks (NNs) are traditionally associated with tasks such as image recognition and natural language processing, this paper presents a novel application of NNs for efficient cryptographic computations. Leveraging the Turing completeness and inherent adaptability of NN models, we propose a transformative approach that efficiently accelerates cryptographic computations on various platforms. More specifically, with a program translation framework that converts traditional cryptographic algorithms into NN models, our proof-of-concept implementations in TensorFlow demonstrate substantial performance improvements: encryption speeds for AES, Chacha20, and Salsa20 show increases of up to 4.09$times$, 5.44$times$, and 5.06$times$, respectively, compared to existing GPU-based cryptographic solutions written by human experts. These enhancements are achieved without compromising the security of the original cryptographic algorithms, ensuring that our neural network-based approach maintains robust security standards. This repurposing of NNs opens new pathways for the development of scalable, efficient, and secure cryptographic systems that can adapt to the evolving
demands of modern computing environments.

View More Papers

Secure Data Analytics in Apache Spark with Fine-grained Policy...

Byeongwook Kim (Seoul National University), Jaewon Hur (Seoul National University), Adil Ahmad (Arizona State University), Byoungyoung Lee (Seoul National University)

Read More

RadSee: See Your Handwriting Through Walls Using FMCW Radar

Shichen Zhang (Michigan State University), Qijun Wang (Michigan State University), Maolin Gan (Michigan State University), Zhichao Cao (Michigan State University), Huacheng Zeng (Michigan State University)

Read More

THEMIS: Regulating Textual Inversion for Personalized Concept Censorship

Yutong Wu (Nanyang Technological University), Jie Zhang (Centre for Frontier AI Research, Agency for Science, Technology and Research (A*STAR), Singapore), Florian Kerschbaum (University of Waterloo), Tianwei Zhang (Nanyang Technological University)

Read More

Interventional Root Cause Analysis of Failures in Multi-Sensor Fusion...

Shuguang Wang (City University of Hong Kong), Qian Zhou (City University of Hong Kong), Kui Wu (University of Victoria), Jinghuai Deng (City University of Hong Kong), Dapeng Wu (City University of Hong Kong), Wei-Bin Lee (Information Security Center, Hon Hai Research Institute), Jianping Wang (City University of Hong Kong)

Read More