Daniel Klischies (Ruhr University Bochum), Philipp Mackensen (Ruhr University Bochum), Veelasha Moonsamy (Ruhr University Bochum)

Vulnerabilities in Android smartphone chipsets have severe consequences, as recent real-world attacks have demonstrated that adversaries can leverage vulnerabilities to execute arbitrary code or exfiltrate confidential information. Despite the far-reaching impact of such attacks, the lifecycle of chipset vulnerabilities has yet to be investigated, with existing papers primarily investigating vulnerabilities in the Android operating system. This paper provides a comprehensive and empirical study of the current state of smartphone chipset vulnerability management within the Android ecosystem. For the first time, we create a unified knowledge base of 3,676 chipset vulnerabilities affecting 437 chipset models from all four major chipset manufacturers, combined with 6,866 smartphone models. Our analysis revealed that the same vulnerabilities are often included in multiple generations of chipsets, providing novel empirical evidence that vulnerabilities are inherited through multiple chipset generations. Furthermore, we demonstrate that the commonly accepted 90-day responsible vulnerability disclosure period is seldom adhered to. We find that a single vulnerability often affects hundreds to thousands of different smartphone models, for which update availability is, as we show, often unclear or heavily delayed. Leveraging the new insights gained from our empirical analysis, we recommend several changes that chipset manufacturers can implement to improve the security posture of their products. At the same time, our knowledge base enables academic researchers to conduct more representative evaluations of smartphone chipsets, accurately assess the impact of vulnerabilities they discover, and identify avenues for future research.

View More Papers

CASPR: Context-Aware Security Policy Recommendation

Lifang Xiao (Institute of Information Engineering, Chinese Academy of Sciences), Hanyu Wang (Institute of Information Engineering, Chinese Academy of Sciences), Aimin Yu (Institute of Information Engineering, Chinese Academy of Sciences), Lixin Zhao (Institute of Information Engineering, Chinese Academy of Sciences), Dan Meng (Institute of Information Engineering, Chinese Academy of Sciences)

Read More

Hidden and Lost Control: on Security Design Risks in...

Haoqiang Wang, Yiwei Fang (Institute of Information Engineering, Chinese Academy of Sciences; School of Cyber Security, University of Chinese Academy of Sciences; Indiana University Bloomington), Yichen Liu (Indiana University Bloomington), Ze Jin (Institute of Information Engineering, Chinese Academy of Sciences; School of Cyber Security, University of Chinese Academy of Sciences; Indiana University Bloomington), Emma Delph…

Read More

Hitchhiking Vaccine: Enhancing Botnet Remediation With Remote Code Deployment...

Runze Zhang (Georgia Institute of Technology), Mingxuan Yao (Georgia Institute of Technology), Haichuan Xu (Georgia Institute of Technology), Omar Alrawi (Georgia Institute of Technology), Jeman Park (Kyung Hee University), Brendan Saltaformaggio (Georgia Institute of Technology)

Read More

Be Careful of What You Embed: Demystifying OLE Vulnerabilities

Yunpeng Tian (Huazhong University of Science and Technology), Feng Dong (Huazhong University of Science and Technology), Haoyi Liu (Huazhong University of Science and Technology), Meng Xu (University of Waterloo), Zhiniang Peng (Huazhong University of Science and Technology; Sangfor Technologies Inc.), Zesen Ye (Sangfor Technologies Inc.), Shenghui Li (Huazhong University of Science and Technology), Xiapu Luo…

Read More