Jung-Woo Chang (University of California, San Diego), Ke Sun (University of California, San Diego), Nasimeh Heydaribeni (University of California, San Diego), Seira Hidano (KDDI Research, Inc.), Xinyu Zhang (University of California, San Diego), Farinaz Koushanfar (University of California, San Diego)

Machine Learning (ML) has been instrumental in enabling joint transceiver optimization by merging all physical layer blocks of the end-to-end wireless communication systems. Although there have been a number of adversarial attacks on ML-based wireless systems, the existing methods do not provide a comprehensive view including multi-modality of the source data, common physical layer protocols, and wireless domain constraints. This paper proposes Magmaw, a novel wireless attack methodology capable of generating universal adversarial perturbations for any multimodal signal transmitted over a wireless channel. We further introduce new objectives for adversarial attacks on downstream applications. We adopt the widely used defenses to verify the resilience of Magmaw. For proof-of-concept evaluation, we build a real-time wireless attack platform using a software-defined radio system. Experimental results demonstrate that Magmaw causes significant performance degradation even in the presence of strong defense mechanisms. Furthermore, we validate the performance of Magmaw in two case studies: encrypted communication channel and channel modality-based ML model. Our code is available at https://github.com/juc023/Magmaw.

View More Papers

Passive Inference Attacks on Split Learning via Adversarial Regularization

Xiaochen Zhu (National University of Singapore & Massachusetts Institute of Technology), Xinjian Luo (National University of Singapore & Mohamed bin Zayed University of Artificial Intelligence), Yuncheng Wu (Renmin University of China), Yangfan Jiang (National University of Singapore), Xiaokui Xiao (National University of Singapore), Beng Chin Ooi (National University of Singapore)

Read More

Defending Against Membership Inference Attacks on Iteratively Pruned Deep...

Jing Shang (Beijing Jiaotong University), Jian Wang (Beijing Jiaotong University), Kailun Wang (Beijing Jiaotong University), Jiqiang Liu (Beijing Jiaotong University), Nan Jiang (Beijing University of Technology), Md Armanuzzaman (Northeastern University), Ziming Zhao (Northeastern University)

Read More

Starshields for iOS: Navigating the Security Cosmos in Satellite...

Jiska Classen (Hasso Plattner Institute, University of Potsdam), Alexander Heinrich (TU Darmstadt, Germany), Fabian Portner (TU Darmstadt, Germany), Felix Rohrbach (TU Darmstadt, Germany), Matthias Hollick (TU Darmstadt, Germany)

Read More