Tianchang Yang (Pennsylvania State University), Sathiyajith K S (Pennsylvania State University), Ashwin Senthil Arumugam (Pennsylvania State University), Syed Rafiul Hussain (Pennsylvania State University)

We present our work-in-progress on designing and implementing a black-box evolutionary fuzzer for REST APIs, specifically targeting 5G core networks that utilize a service-based architecture (SBA). Unlike existing tools that rely on static generation-based approaches, our approach progressively refines test inputs to explore deeper code regions in the target system. We incorporate a thorough analysis of the limited response message feedback available in black-box settings and employ a carefully crafted mutation method to generate effective state-aware test inputs. Evaluation of our current implementation has uncovered two previously unknown vulnerabilities in open-source 5G core network implementations, resulting in the assignment of two CVEs. Additionally, our approach already demonstrates superior performance compared to existing black-box fuzzing methods.

View More Papers

mmProcess: Phase-Based Speech Reconstruction from mmWave Radar

Hyeongjun Choi, Young Eun Kwon, Ji Won Yoon (Korea University)

Read More

LeoCommon – A Ground Station Observatory Network for LEO...

Eric Jedermann, Martin Böh (University of Kaiserslautern), Martin Strohmeier (armasuisse Science & Technology), Vincent Lenders (Cyber-Defence Campus, armasuisse Science & Technology), Jens Schmitt (University of Kaiserslautern)

Read More

Sheep's Clothing, Wolf's Data: Detecting Server-Induced Client Vulnerabilities in...

Fangming Gu (Institute of Information Engineering, Chinese Academy of Sciences), Qingli Guo (Institute of Information Engineering, Chinese Academy of Sciences), Jie Lu (Institute of Computing Technology, Chinese Academy of Sciences), Qinghe Xie (Institute of Information Engineering, Chinese Academy of Sciences), Beibei Zhao (Institute of Information Engineering, Chinese Academy of Sciences), Kangjie Lu (University of Minnesota),…

Read More

Manifoldchain: Maximizing Blockchain Throughput via Bandwidth-Clustered Sharding

Chunjiang Che (The Hong Kong University of Science and Technology (Guangzhou)), Songze Li (Southeast University), Xuechao Wang (The Hong Kong University of Science and Technology (Guangzhou))

Read More