Yang Yang (Singapore Management University), Guomin Yang (Singapore Management University), Yingjiu Li (University of Oregon, USA), Pengfei Wu (Singapore Management University), Rui Shi (Hainan University, China), Minming Huang (Singapore Management University), Jian Weng (Jinan University, Guangzhou, China), HweeHwa Pang (Singapore Management University), Robert H. Deng (Singapore Management University)

Service discovery is a fundamental process in wireless networks, enabling devices to find and communicate with services dynamically, and is critical for the seamless operation of modern systems like 5G and IoT. This paper introduces PriSrv+, an advanced privacy and usability-enhanced service discovery protocol for modern wireless networks and resource-constrained environments. PriSrv+ builds upon PriSrv (NDSS'24), by addressing critical limitations in expressiveness, privacy, scalability, and efficiency, while maintaining compatibility with widely-used wireless protocols such as mDNS, BLE, and Wi-Fi.

A key innovation in PriSrv+ is the development of Fast and Expressive Matchmaking Encryption (FEME), the first matchmaking encryption scheme capable of supporting expressive access control policies with an unbounded attribute universe, allowing any arbitrary string to be used as an attribute. FEME significantly enhances the flexibility of service discovery while ensuring robust message and attribute privacy. Compared to PriSrv, PriSrv+ optimizes cryptographic operations, achieving 7.62$times$ faster for encryption and 6.23$times$ faster for decryption, and dramatically reduces ciphertext sizes by 87.33$%$. In addition, PriSrv+ reduces communication costs by 87.33$%$ for service broadcast and 86.64$%$ for anonymous mutual authentication compared with PriSrv. Formal security proofs confirm the security of FEME and PriSrv+. Extensive evaluations on multiple platforms demonstrate that PriSrv+ achieves superior performance, scalability, and efficiency compared to existing state-of-the-art protocols.

View More Papers

Discovering Blind-Trust Vulnerabilities in PLC Binaries via State Machine...

Fangzhou Dong (Arizona State University), Arvind S Raj (Arizona State University), Efrén López-Morales (New Mexico State University), Siyu Liu (Arizona State University), Yan Shoshitaishvili (Arizona State University), Tiffany Bao (Arizona State University), Adam Doupé (Arizona State University), Muslum Ozgur Ozmen (Arizona State University), Ruoyu Wang (Arizona State University)

Read More

Dilipa: Making Micropatches from Edits to Lifted C

Henny Sipma, Ricardo Baratto, Ben Karel, Michael Gordon (Aarno Labs)

Read More

Repairing Trust in Domain Name Disputes Practices: Insights from...

Vinny Adjibi (Georgia Institute of Technology), Athanasios Avgetidis (Georgia Institute of Technology), Manos Antonakakis (Georgia Institute of Technology), Alberto Dainotti (Georgia Institute of Technology), Michael Bailey (Georgia Institute of Technology), Fabian Monrose (Georgia Institute of Technology)

Read More