Mridula Singh (ETH Zurich, Switzerland), Patrick Leu (ETH Zurich, Switzerland), Srdjan Capkun (ETH Zurich, Switzerland)

Physical-layer attacks allow attackers to manipulate (spoof) ranging and positioning. These attacks had real-world impact and allowed car thefts, executions of unauthorized payments and manipulation of navigation. UWB impulse radio, standardized within 802.15.4a,f, has emerged as a prominent technique for precise ranging that allows high operating distances despite power constraints by transmitting multi-pulse symbols. Security of UWB ranging (in terms of the attacker's ability to manipulate the measured distance) has been discussed in the literature and is, since recently also being addressed as a part of the emerging 802.15.4z standard. However, all research so far, as well as security enhancements proposed within this emerging standard face one main limitation: they achieve security through short symbol lengths and sacrifice performance (i.e., limit the maximum distance of measurement), or use longer symbol lengths, therefore sacrificing security. We present UWB with pulse reordering (UWB-PR), the first modulation scheme that secures distance measurement between two mutually trusted devices against all physical-layer distance shortening attacks without sacrificing performance, therefore simultaneously enabling extended range and security. We analyze the security of UWB-PR under the attacker that fully controls the communication channel and show that UWB-PR resists such strong attackers. We evaluate UWB-PR within a UWB system built on top of the IEEE 802.15.4 device and show that it achieves distances of up to 93m with 10cm precision (LoS). UWB-PR is, therefore, a good candidate for the extended mode of the new 802.15.4z Low Rate Pulse standard. Finally, UWB-PR shows that secure distance measurement can be built on top of modulation schemes with longer symbol lengths - so far, this was considered insecure.

View More Papers

Neural Machine Translation Inspired Binary Code Similarity Comparison beyond...

Fei Zuo (University of South Carolina), Xiaopeng Li (University of South Carolina), Patrick Young (Temple University), Lannan Luo (University of South Carolina), Qiang Zeng (University of South Carolina), Zhexin Zhang (University of South Carolina)

Read More

Neuro-Symbolic Execution: Augmenting Symbolic Execution with Neural Constraints

Shiqi Shen (National University of Singapore), Shweta Shinde (National University of Singapore), Soundarya Ramesh (National University of Singapore), Abhik Roychoudhury (National University of Singapore), Prateek Saxena (National University of Singapore)

Read More

Vault: Fast Bootstrapping for the Algorand Cryptocurrency

Derek Leung (MIT CSAIL), Adam Suhl (MIT CSAIL), Yossi Gilad (MIT CSAIL), Nickolai Zeldovich (MIT CSAIL)

Read More

MBeacon: Privacy-Preserving Beacons for DNA Methylation Data

Inken Hagestedt (CISPA Helmholtz Center for Information Security), Yang Zhang (CISPA Helmholtz Center for Information Security), Mathias Humbert (Swiss Data Science Center, ETH Zurich/EPFL), Pascal Berrang (CISPA Helmholtz Center for Information Security), Haixu Tang (Indiana University Bloomington), XiaoFeng Wang (Indiana University Bloomington), Michael Backes (CISPA Helmholtz Center for Information Security)

Read More