Orcun Cetin (Delft University of Technology), Carlos Gañán (Delft University of Technology), Lisette Altena (Delft University of Technology), Takahiro Kasama (National Institute of Information and Communications Technology), Daisuke Inoue (National Institute of Information and Communications Technology), Kazuki Tamiya (Yokohama National University), Ying Tie (Yokohama National University), Katsunari Yoshioka (Yokohama National University), Michel van Eeten (Delft…

With the rise of IoT botnets, the remediation of infected devices has become a critical task. As over 87% of these devices reside in broadband networks, this task will fall primarily to consumers and the Internet Service Providers. We present the first empirical study of IoT malware cleanup in the wild -- more specifically, of removing Mirai infections in the network of a medium-sized ISP. To measure remediation rates, we combine data from an observational study and a randomized controlled trial involving 220 consumers who suffered a Mirai infection together with data from honeypots and darknets. We find that quarantining and notifying infected customers via a walled garden, a best practice from ISP botnet mitigation for conventional malware, remediates 92% of the infections within 14 days. Email-only notifications have no observable impact compared to a control group where no notifications were sent. We also measure surprisingly high natural remediation rates of 58-74% for this control group and for two reference networks where users were also not notified. Even more surprising, reinfection rates are low. Only 5% of the customers who remediated suffered another infection in the five months after our first study. This stands in contrast to our lab tests, which observed reinfection of real IoT devices within minutes -- a discrepancy for which we explore various different possible explanations, but find no satisfactory answer. We gather data on customer experiences and actions via 76 phone interviews and the communications logs of the ISP. Remediation succeeds even though many users are operating from the wrong mental model -- e.g., they run anti-virus software on their PC to solve the infection of an IoT device. While quarantining infected devices is clearly highly effective, future work will have to resolve several remaining mysteries. Furthermore, it will be hard to scale up the walled garden solution because of the weak incentives of the ISPs.

View More Papers

ML-Leaks: Model and Data Independent Membership Inference Attacks and...

Ahmed Salem (CISPA Helmholtz Center for Information Security), Yang Zhang (CISPA Helmholtz Center for Information Security), Mathias Humbert (Swiss Data Science Center, ETH Zurich/EPFL), Pascal Berrang (CISPA Helmholtz Center for Information Security), Mario Fritz (CISPA Helmholtz Center for Information Security), Michael Backes (CISPA Helmholtz Center for Information Security)

Read More

Neuro-Symbolic Execution: Augmenting Symbolic Execution with Neural Constraints

Shiqi Shen (National University of Singapore), Shweta Shinde (National University of Singapore), Soundarya Ramesh (National University of Singapore), Abhik Roychoudhury (National University of Singapore), Prateek Saxena (National University of Singapore)

Read More

Practical Hidden Voice Attacks against Speech and Speaker Recognition...

Hadi Abdullah (University of Florida), Washington Garcia (University of Florida), Christian Peeters (University of Florida), Patrick Traynor (University of Florida), Kevin R. B. Butler (University of Florida), Joseph Wilson (University of Florida)

Read More

Stealthy Adversarial Perturbations Against Real-Time Video Classification Systems

Shasha Li (University of California Riverside), Ajaya Neupane (University of California Riverside), Sujoy Paul (University of California Riverside), Chengyu Song (University of California Riverside), Srikanth V. Krishnamurthy (University of California Riverside), Amit K. Roy Chowdhury (University of California Riverside), Ananthram Swami (United States Army Research Laboratory)

Read More