Lei Zhao (Wuhan University), Yue Duan (University of California, Riverside), Heng Yin (University of California, Riverside), Jifeng Xuan (Wuhan University)

Hybrid fuzzing which combines fuzzing and concolic execution has become an advanced technique for software vulnerability detection. Based on the observation that fuzzing and concolic execution are complementary in nature, the state-of-the-art hybrid fuzzing systems deploy ``demand launch'' and ``optimal switch'' strategies. Although these ideas sound intriguing, we point out several fundamental limitations in them, due to oversimplified assumptions. We then propose a novel ``discriminative dispatch'' strategy to better utilize the capability of concolic execution. We design a novel Monte Carlo based probabilistic path prioritization model to quantify each path's difficulty and prioritize them for concolic execution. This model treats fuzzing as a random sampling process. It calculates each path's probability based on the sampling information. Finally, our model prioritizes and assigns the most difficult paths to concolic execution. We implement a prototype system DigFuzz and evaluate our system with two representative datasets. Results show that the concolic execution in DigFuzz outperforms than that in a state-of-the-art hybrid fuzzing system Driller in every major aspect. In particular, the concolic execution in DigFuzz contributes to discovering more vulnerabilities (12 vs. 5) and producing more code coverage (18.9% vs. 3.8%) on the CQE dataset than the concolic execution in Driller.

View More Papers

YODA: Enabling computationally intensive contracts on blockchains with Byzantine...

Sourav Das (Department of Computer Science and Engineering, Indian Institute of Technology Delhi), Vinay Joseph Ribeiro (Department of Computer Science and Engineering, Indian Institute of Technology Delhi), Abhijeet Anand (Department of Computer Science and Engineering, Indian Institute of Technology Delhi)

Read More

Ginseng: Keeping Secrets in Registers When You Distrust the...

Min Hong Yun (Rice University), Lin Zhong (Rice University)

Read More

Coconut: Threshold Issuance Selective Disclosure Credentials with Applications to...

Alberto Sonnino (University College London (UCL)), Mustafa Al-Bassam (University College London (UCL)), Shehar Bano (University College London (UCL)), Sarah Meiklejohn (University College London (UCL)), George Danezis (University College London (UCL))

Read More

Cracking the Wall of Confinement: Understanding and Analyzing Malicious...

Eihal Alowaisheq (Indiana University, King Saud University), Peng Wang (Indiana University), Sumayah Alrwais (King Saud University), Xiaojing Liao (Indiana University), XiaoFeng Wang (Indiana University), Tasneem Alowaisheq (Indiana University, King Saud University), Xianghang Mi (Indiana University), Siyuan Tang (Indiana University), Baojun Liu (Tsinghua University)

Read More