Jaeho Lee (Rice University), Ang Chen (Rice University), Dan S. Wallach (Rice University)

A good security practice for handling sensitive data, such as passwords, is to overwrite the data buffers with zeros once the data is no longer in use. This protects against attackers who gain a snapshot of a device’s physical memory, whether by in- person physical attacks, or by remote attacks like Meltdown and Spectre. This paper looks at unnecessary password retention in Android phones by popular apps, secure password management apps, and even the lockscreen system process. We have performed a comprehensive analysis of the Android framework and a variety of apps, and discovered that passwords can survive in a variety of locations, including UI widgets where users enter their passwords, apps that retain passwords rather than exchange them for tokens, old copies not yet reused by garbage collectors, and buffers in keyboard apps. We have developed solutions that successfully fix these problems with modest code changes.

View More Papers

Latex Gloves: Protecting Browser Extensions from Probing and Revelation...

Alexander Sjösten (Chalmers University of Technology), Steven Van Acker (Chalmers University of Technology), Pablo Picazo-Sanchez (Chalmers University of Technology), Andrei Sabelfeld (Chalmers University of Technology)

Read More

SABRE: Protecting Bitcoin against Routing Attacks

Maria Apostolaki (ETH Zurich), Gian Marti (ETH Zurich), Jan Müller (ETH Zurich), Laurent Vanbever (ETH Zurich)

Read More

Understanding Open Ports in Android Applications: Discovery, Diagnosis, and...

Daoyuan Wu (Singapore Management University), Debin Gao (Singapore Management University), Rocky K. C. Chang (The Hong Kong Polytechnic University), En He (China Electronic Technology Cyber Security Co., Ltd.), Eric K. T. Cheng (The Hong Kong Polytechnic University), Robert H. Deng (Singapore Management University)

Read More

How to End Password Reuse on the Web

Ke Coby Wang (UNC Chapel Hill), Michael K. Reiter (UNC Chapel Hill)

Read More