Tyler McDaniel (University of Tennessee, Knoxville), Jared M. Smith (University of Tennessee, Knoxville), Max Schuchard (University of Tennessee, Knoxville)

BGP route leaks frequently precipitate serious disruptions to inter-domain routing. These incidents have plagued the Internet for decades while deployment and usability issues cripple efforts to mitigate the problem. Peerlock, introduced in 2016, addresses route leaks with a new approach. Peerlock enables filtering agreements between transit providers to protect their own networks without the need for broad cooperation or a trust infrastructure. We outline the Peerlock system and one variant, Peerlock-lite, and conduct live Internet experiments to measure their deployment on the control plane. Our measurements find evidence for significant Peerlock protection between Tier 1 networks in the peering clique, where 48% of potential Peerlock filters are deployed, and reveal that many other networks also deploy filters against Tier 1 leaks. To guide further deployment, we also quantify Peerlock’s impact on route leaks both at currently observed levels and under hypothetical future deployment scenarios via BGP simulation. These experiments reveal present Peerlock deployment restricts Tier 1 leak export to 10% or fewer networks for 40% of simulated leaks. Strategic additional Peerlock-lite deployment at all large ISPs (<1% of all networks), in tandem with Peerlock within the peering clique as deployed, completely mitigates about 80% of simulated Tier 1 route leaks.

View More Papers

Let’s Stride Blindfolded in a Forest: Sublinear Multi-Client Decision...

Jack P. K. Ma (The Chinese University of Hong Kong), Raymond K. H. Tai (The Chinese University of Hong Kong), Yongjun Zhao (Nanyang Technological University), Sherman S.M. Chow (The Chinese University of Hong Kong)

Read More

(Short) Object Removal Attacks on LiDAR-based 3D Object Detectors

Zhongyuan Hau, Kenneth Co, Soteris Demetriou, and Emil Lupu (Imperial College London) Best Short Paper Award Runner-up!

Read More

Mondrian: Comprehensive Inter-domain Network Zoning Architecture

Jonghoon Kwon (ETH Zürich), Claude Hähni (ETH Zürich), Patrick Bamert (Zürcher Kantonalbank), Adrian Perrig (ETH Zürich)

Read More

PHOENIX: Device-Centric Cellular Network Protocol Monitoring using Runtime Verification

Mitziu Echeverria (The University of Iowa), Zeeshan Ahmed (The University of Iowa), Bincheng Wang (The University of Iowa), M. Fareed Arif (The University of Iowa), Syed Rafiul Hussain (Pennsylvania State University), Omar Chowdhury (The University of Iowa)

Read More